Tìm số đo 3 góc của 1 tam giác biết đó là 3 số tự nhiên liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách của mình:
Cho tam giác ABC có AB=n-1 AC=n và BC=n+1
Điều kiện: n>2
và \(\widehat{A}>\widehat{B}>\widehat{C}\)
TH1: \(\widehat{A}=2\widehat{C}\)
tam giác ABC có: \(\frac{n+1}{sinA}=\frac{n-1}{sinC}\)
\(\Leftrightarrow\frac{n+1}{sin2C}=\frac{n-1}{sinC}\)
\(\Leftrightarrow\frac{n+1}{2\cdot cosC\cdot sinC}=\frac{n-1}{sinC}\)
\(\Leftrightarrow\frac{n+1}{2\cdot cosC}=n-1\)
\(\Rightarrow2\cdot cosC=\frac{n+1}{n-1}\)(1)
Đồng thời theo hệ thức Cosin:
\(n^2+\left(n+1\right)^2-2n\left(n+1\right)\cdot cosC=\left(n-1\right)^2\)
\(\Leftrightarrow2\cdot cosC=n^2+4n=\frac{n\left(n+4\right)}{n\left(n+1\right)}=\frac{n+4}{n+1}\)(2)
Từ (1) và (2):
Suy ra: n=5(thỏa)
Suy ra tam giác có cạnh là 4;5;6
Xét tiếp TH2: \(\widehat{A}=2\widehat{B}\)
TH3: \(\widehat{B}=2\widehat{C}\)
Cần 1 cách hay khác! Cảm ơn!
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-co-3widehatbac2widehatabc180-do-va-so-do-3-canh-cua-tam-giac-la-3-so-chan-lien-tiep-tinh-chu-vi-cua-tam-giac-abc.448331714978
Gọi 3 cạnh tam giác vuông là (n-1), n và (n+1), ta có:
(n-1)2 + n2 = (n+1)2
n2 -2n + 1 + n2 = n2 + 2n + 1
n2 - 4n =0
n(n-4) = 0
n = 0 (loại) hoặc n=4
Vậy 3 cạnh là: 3, 4, 5
59,60,61