M=2006^2-2005^2+2004^2-2003^2+...+2^2-1^2
Tìm M mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = \(\frac{2^{2004}+1}{2^{2003}+1}\)=\(\frac{2^{2003}+2}{2^{2004}+2}\)
C = \(\frac{2^{2005}+3}{2^{2006}+3}\)= \(\frac{2^{2005}+2}{2^{2006}+2}\)
Vậy C>D
mình chuyển 1 hạng tử của 3 từ bên d sang c nên ta được pt như trên
127^2 + 146 x 126 + 73^2
= 127^2 + 2 x 73 x 126 + 73 x 73
= 127^2 + 73 x ( 2 x126 + 73 )
=......
rồi sau đo tinh binh thuong mk chi co the giup vay thoi
\(\text{C=1+2-3-4+5+6-7-8+9+...+2002-2003-2004+2005+2006}\)
\(\text{C=1+(2-3-4+5)+(6-7-8+9)+...+(2002-2003-2004+2005)+2006}\)
\(\text{C=1+0+0+...+0+2006}\)
\(\text{C=1+2006}\)
\(C=2007\)
HỌC TỐT!!!
giải
ta thấy 1 = 2004/2005 + 1/2005
1= 2005/2006 + 1/ 2006
vì 1/ 2005 > 1/2006 ( phần bù )
nên suy ra : 2004 / 2005 < 2005 /2006
\(2006^2-2005^2+2004^2-2003^3+...+2^2-1^2\)
\(=\left(2006-2005\right).\left(2006+2005\right)+\left(2004-2003\right).\left(2004+2003\right)+...+\left(2-1\right).\left(2+1\right)\)
\(=2006+2005+2004+...+2+1\)
\(=\left(2006+1\right)+\left(2005+2\right)+...\left(1003+1004\right)\)
\(=2007.1003\)
\(=....\)
~ hok tốt ~
@Phan thi hong nhung, sao từ bước thứ 2 ra đc bước thứ 3 vậy
Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)
=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)
=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)
=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
=> \(x^2-1=0\)
=> \(x^2=1\)
=> \(x=\pm1\)
Vậy phương trình có 2 nghiệm là x = 1, x = -1 .
\(M=2006^2-2005^2+2004^2-2003^2+...+2^2-1^2\)
\(M=\left(2006-2005\right)\left(2006+2005\right)+\left(2004-2003\right)\left(2004+2003\right)+...+\left(2-1\right)\left(2+1\right)\)
\(M=2006+2005+2004+2003+...+1+2\)
Trở về bài toán lớp 5 :v
\(M=2013021\)
2013021