Chứng minh rằng với mọi số nguyên dương n thì : n5-n chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)
\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)
* Ta có u 1 = 9 1 − 1 = 8 chia hết cho 8 (đúng với n = 1).
* Giả sử u k = 9 k − 1 chia hết cho 8.
Ta cần chứng minh u k + 1 = 9 k + 1 − 1 chia hết cho 8.
Thật vậy, ta có u k + 1 = 9 k + 1 − 1 = 9.9 k − 1 = 9 9 k − 1 + 8 = 9 u k + 8 .
Vì 9 u k và 8 đều chia hết cho 8, nên u k + 1 cũng chia hết cho 8.
Vậy với mọi số nguyên dương n thì u n chia hết cho 8.
\(n^5-n\)
\(=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)
\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n^2-1\right)\)
Ta có số hạng đầu tiên là tích 5 số nguyên liên tiếp nên chia hểt cho 5, số hạng thứ 2 chia hết cho 5
Vậy \(n^5-n⋮5\)
Vì số n là số nguyên dương\(\Rightarrow\) n=2k hoacn=2k+1 (k\(\in\)N*)
Với n=2k \(\Rightarrow\) (5n+15)(n+6)=(10k+15)(2k+6)
=10x2k2+10x6k+30k+80
=10x2k2+10x6k+10x3k+10x8
=10(2k2+6k+3k+8) chia hết cho 10
Với n=2k+1 \(\Rightarrow\) (5n+15)(n+6)=[10(k+1)+15](2k+1+6)
=(10k+10+15)(2k+7)
=10x2kk+10x7k+10x2k+10x7+30k+105
=10(2kk+7k+2k+7+2k)+105
Vì 10(2kk+7k+2k+7+2k) chia hết cho 10 mà 2x105 chia hết cho 10
 \(\Rightarrow\) 105 chia hết cho 10
Vậy n là số nguyên dương thì (5n+15)(n+6) chia hết cho 10
3n+2 -2n+2 +3n -2n
=3n .32 -2n .22 +3n -22
=3n(9+)-2n(4-1)
Vì 3n .10 ⋮10
=> 3n .10- 2n .3⋮10
=>3n +2 -2n+2 +3n -2n ⋮10
sai
trước 2^n là dấu trừ => trong ngoặc đổi dấu thành 2^n(4+1)
=>2^n-1.10 chia hết cho 10
áp dụng định lí fecma nhé bạn
Theo định lí Fecma nhỏ,ta có:\(n^5-n\equiv0\left(mod5\right)\)
Do vậy \(n^5-n⋮5^{\left(đpcm\right)}\)
~ Học tốt nha bạn~