K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2022

\(\Leftrightarrow\left(x^2-y^2\right)^2>=\left(x^2-2xy+y^2\right)^2\)

\(\Leftrightarrow\left(x^2-y^2-x^2+2xy-y^2\right)\left(x^2-y^2+x^2-2xy+y^2\right)>=0\)

\(\Leftrightarrow\left(-2y^2+2xy\right)\left(2x^2-2xy\right)>=0\)

\(\Leftrightarrow2x\left(x-y\right)\cdot2y\left(x-y\right)>=0\)

=>4xy(x-y)^2>=0(luôn đúng khi xy>=0)

NV
17 tháng 12 2020

Với mọi x;y;z ta luôn có:

\(\left(x+y-1\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+2xy-2x-2y+1+z^2-z+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow x^2+y^2+z^2+\dfrac{5}{4}+2xy-2x-2y-z\ge0\)

\(\Leftrightarrow2+2xy-2x-2y\ge z\)

\(\Leftrightarrow2\left(1-x\right)\left(1-y\right)\ge z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)

 

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Bạn tham khảo lời giải tại đây:

cho các số thực dưong x,y,z thỏa mãn : x2 y2 z2=3chứng minh rằng : \(\dfrac{x}{\sqrt[3]{yz}} \dfrac{y}{\sqrt[3]{zx}} \df... - Hoc24

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Cách khác:

Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:

\(\sum \frac{x}{\sqrt[3]{yz}}\geq \sum \frac{x}{\frac{y+z+1}{3}}=3\sum \frac{x}{y+z+1}=3\sum \frac{x^2}{xy+xz+x}\)

\(\geq 3. \frac{(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\)

Ta sẽ chứng minh: \(\frac{3(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\geq xy+yz+xz(*)\)

Đặt $x+y+z=a$ thì $xy+yz+xz=\frac{a^2-3}{2}$

Bằng BĐT AM-GM dễ thấy $\sqrt{3}< a\leq 3$

BĐT $(*)$ trở thành:

$\frac{3a^2}{a^2+a-3}\geq \frac{a^2-3}{2}$

$\Leftrightarrow a^4+a^3-12a^2-3a+9\leq 0$

$\Leftrightarrow (a-3)(a+1)(a^2+3a-3)\leq 0$

Điều này đúng với mọi $\sqrt{3}< a\leq 3$

Do đó BĐT $(*)$ đúng nên ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$

25 tháng 12 2019

Ta có: \(\left(x-y\right)^2\ge0\)

\(\Rightarrow x^2-2xy+y^2\ge0\)

\(\Rightarrow x^2+2xy+y^2\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)(đpcm)

25 tháng 12 2019

Ta có vì : x,y > 0

và \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Từ đề bài ta có:

\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{x+y}{xy}.\left(x+y\right).xy\ge\frac{4}{x+y}.xy\left(x+y\right)\)

Áp dụng đẳng thức Cô-si:

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Vậy....

đpcm.

NV
23 tháng 10 2021

Chứng minh bằng phép biến đổi tương đương:

1.

\(\Leftrightarrow4+x+y\ge4\sqrt{x+y}\)

\(\Leftrightarrow x+y-4\sqrt{x+y}+4\ge0\)

\(\Leftrightarrow\left(\sqrt{x+y}-2\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

2.

\(\Leftrightarrow\dfrac{y+z}{xyz}\ge\dfrac{4}{x^2+yz}\)

\(\Leftrightarrow\left(y+z\right)\left(x^2+yz\right)\ge4xyz\)

\(\Leftrightarrow x^2y+x^2z+y^2z+z^2y-4xyz\ge0\)

\(\Leftrightarrow y\left(x^2+z^2-2xz\right)+z\left(x^2+y^2-2xy\right)\ge0\)

\(\Leftrightarrow y\left(x-z\right)^2+z\left(x-y\right)^2\ge0\) (đúng)

NV
18 tháng 5 2021

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2+2xy}{x^2y^2}\)

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{x^2y^2}+\dfrac{2}{xy}\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2x^2y^2}}+\dfrac{2}{xy}=\dfrac{2}{\left|xy\right|}+\dfrac{2}{xy}\ge\dfrac{2}{xy}+\dfrac{2}{xy}=\dfrac{4}{xy}\)

24 tháng 12 2020

nhờ mn giúp mk bài này vs ạ

mk đang cần gấp !

cảm ơn mn nhiều

NV
25 tháng 12 2020

Đặt \(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)=\left(a;b;c\right)\) \(\Rightarrow a^6+b^6+c^6=3\)

\(a^6+a^6+a^6+a^6+a^6+1\ge6a^5\)

Tương tự: \(5b^6+1\ge6b^5\) ; \(5c^6+1\ge6c^5\)

Cộng vế với vế: \(18=5\left(a^6+b^6+c^6\right)+3\ge6\left(a^5+b^5+c^5\right)\)

\(\Rightarrow3\ge a^5+b^6+b^5\)

BĐT cần chứng minh: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge a^3b^3+b^3c^3+c^3a^3\) 

Ta có:

\(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\) (1)

Mà \(3\left(a+b+c\right)\ge\left(a^5+b^5+c^5\right)\left(a+b+c\right)\ge\left(a^3+b^3+c^3\right)^2\ge3\left(a^3b^3+b^3c^3+c^3a^3\right)\)

\(\Rightarrow a+b+c\ge a^3b^3+b^3c^3+c^3a^3\) (2)

Từ (1);(2) \(\Rightarrow\) đpcm