K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Ta có: H và D đối xứng nhau qua AB

nên AB là đường trung trực của HD

hay AH=AD(1)

Xét ΔAHD có AH=AD

nên ΔAHD cân tại A

mà AB là đường trung trực ứng với cạnh HD

nên AB là đường phân giác ứng với cạnh HD

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

Suy ra: AH=AE(2)

Xét ΔAHE có AH=AE

nên ΔAHE cân tại A

mà AC là đường trung trực ứng với cạnh HE

nên AC là đường phân giác ứng với cạnh HE

Từ (1) và (2) suy ra AD=AE(3)

Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)

\(=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)

\(=2\cdot90^0=180^0\)

hay E,A,D thẳng hàng(4)

Từ (3) và (4) suy ra A là trung điểm của ED

hay E và D đối xứng nhau qua A

1: Ta có: H và D đối xứng nhau qua AB

nên AB là đường trung trực của HD

hay AH=AD(1)

Xét ΔADH có AH=AD

nên ΔAHD cân tại A

mà AB là đường trung trực ứng với cạnh HD

nên AB là đường phân giác ứng với cạnh HD

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

hay AH=AE(2)

Xét ΔAHE có AH=AE

nên ΔAHE cân tại A

mà AC là đường trung trực ứng với cạnh đáy HE

nên AC là đường phân giác ứng với cạnh HE

Từ (1) và (2) suy ra AE=AD(3)

Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)

\(=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)

\(=2\cdot90^0=180^0\)

Suy ra: E,A,D thẳng hàng(4)

Từ (3) và (4) suy ra A là trung điểm của ED

hay D và E đối xứng nhau qua A

2: Xét ΔDHE có 

HA là đường trung tuyến ứng với cạnh ED

\(HA=\dfrac{ED}{2}\)

Do đó: ΔDHE vuông tại H

3: Xét ΔAHC và ΔAEC có 

AH=AE

\(\widehat{HAC}=\widehat{EAC}\)

AC chung

Do đó: ΔAHC=ΔAEC

Suy ra: \(\widehat{AHC}=\widehat{AEC}\)

hay \(\widehat{AEC}=90^0\)

Xét ΔAHB và ΔADB có 

AH=AD

\(\widehat{HAB}=\widehat{DAB}\)

AB chung

Do đó: ΔAHB=ΔADB

Suy ra: \(\widehat{AHB}=\widehat{ADB}\)

hay \(\widehat{ADB}=90^0\)

Xét tứ giác BCED có BD//EC và \(\widehat{DBC}=90^0\)

nên BCED là hình thang vuông

19 tháng 3 2019

\(\Delta\)AHB=\(\Delta\)ADB(c-c-c) thông qua việc chứng minh 2 cặp tam giác nhỏ

=>góc ADB=90(1)

\(\Delta\)AEC=\(\Delta\)AHC(c-c-c)cũng thông qua việc chứng minh 2 cặp tam giác nhỏ

=>góc CEA=90(2)

Mà:D;E;A thẳng hàng(3)

từ 1,2 và 3 suy ra BCED là hình thang

19 tháng 3 2019

\(\Delta\)AEC đồng dạng \(\Delta\)BDA(g-g)=>BD.CE=AD.AE(1)

\(\Delta\)AIE=\(\Delta\)DKA(g-c-g)=>AE=AD=1/2DE(2)

1 và 2=>BD.CE=DE2/4

7 tháng 12 2021

giúp

 

a: Ta có: H và E đối xứng nhau qua AB

nên AH=AE và AB là tia phân giác của góc HAE(1)

Ta có: H và D đối xứng nhau qua AC

nên AH=AD và AC là tia phân giác của góc HAD(2)

Từ (1) và (2) suy ra D và E đối xứng nhau qua A

17 tháng 12 2020

Bạn tự vẽ hình:D

a,Ta có: + D là điểm đối xứng với H qua AC

=>AC là đường trung trực của t/g DAH

=>AD=AH(1)

+ E là điểm đối xứng với H qua AB

=>AB  là đường trung trực của t/g EAH

=>AH=AE(2)

Từ (1) và (2)=>AD=AE(3)

Vì AE=AH=>t/g EAH cân tại A=>AB đồng thời là đường p/g

=>^EAB=^HAB

Vì AH=AD=>t/g HAD cân tại A=>AC đồng thời là đường p/g 

=>^HAC=^DAC

Mà ^BAH+^CAH=90o

Do đó:^EAB + ^BAH + ^HAC + ^CAD

       => 2(^BAH)   +  2(^HAC)             

       => 2(^BAH + ^HAC)                    

       =>2.90o =180o

      =>E,A,D thẳng hàng (4)

Từ (3) và (4)=>D đx E qua A

17 tháng 12 2020
Đúng như bạn trên viết
Bài 1:Cho tam giác ABC, điểm I nằm giữa B và CQua I vẽ đường thẳng song song vs AB, cắt AC ở HQua I vẽ đường thẳng song song vs AC, cắt AB ở Ka) Tứ giác AHIK là hình gì?b) Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi?c) Tam giác ABC có điều kiện gì thì tứ giác AHIK là hcn?Bài 2: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng vs d qua AB, E là giao...
Đọc tiếp

Bài 1:Cho tam giác ABC, điểm I nằm giữa B và C

Qua I vẽ đường thẳng song song vs AB, cắt AC ở H

Qua I vẽ đường thẳng song song vs AC, cắt AB ở K

a) Tứ giác AHIK là hình gì?

b) Điểm I ở vị trí nào trên cạnh BC thì tứ giác AHIK là hình thoi?

c) Tam giác ABC có điều kiện gì thì tứ giác AHIK là hcn?

Bài 2: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng vs d qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng vs D qua AC, F là giao điểm của DN và AC

a) Tứ giác AEDF là hình gì? Vì sao?

b) Các tứ giác ADBM, ADCN là hình gì? Vì sao?

c) CMR: M đối xứng vs N qua A

d) Tam giác vuông ABC có điều kiện gì thì tứ giác ADEF ,là hình vuông

Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. gọi D là điểm đối xứng vs H qua AB, gọi E là điểm đx vs H qua Ac

a) CM D đx vs E qua A

b) Tam giác DHE là tam giác gì? Vì sao? 

c) Tứ giác BNEC là hình gì? Vì sao

d) CMR BC= BD+CE

Bài 3: Cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm của AB, AC, DC, DB. Tìm đk của tứ giác ABCD để EFGH là:

a) Hình chứ nhật  ; b) Hình thoi   ; c) hình vuông   

Bài 4: Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm GB, K là trung điểm của GC.

a) CMR: Tứ giác DEHK là hbh

b) Tam giác ABC có đk j thì tứ giác DEHK là hcn

c) Nếu các đường trung tuyến BN và CE vuông góc vs nhau thì tứ giác DEHK là hình j?

0

a: Ta có: H và E đối xứng với nhau qua AB

nên AB là đường trung trực của HE

=>AH=AE

=>ΔAEH cân tại A

mà AB là đường trung tuyến

nên AB là tia phân giác của góc HAE(1)

Ta có: H và D đối xứng nhau qua AC

nên AC là đường trung trực của HD

=>AH=AD

=>ΔAHD cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAD(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

b: Xét ΔDHE có 
HA là đường trung tuyến

HA=DE/2

Do đó: ΔDHE vuông tại H