K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

với a,b,c dương

26 tháng 10 2018

\(P+12=\left(\frac{3a}{b+c}+3\right)+\left(\frac{4b}{a+c}+4\right)+\left(\frac{5c}{a+b}+5\right)\)

\(=\left(a+b+c\right)\left(\frac{3}{b+c}+\frac{4}{c+a}+\frac{5}{a+b}\right)\)

\(\ge\left(a+b+c\right).\frac{\left(\sqrt{3}+2+\sqrt{5}\right)^2}{2\left(a+b+c\right)}=\frac{\left(\sqrt{3}+2+\sqrt{5}\right)^2}{2}\)

2 tháng 10 2016

Gọi k = \(\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}\)

=> \(\begin{cases}a=2k+1\\b=4k-3\\c=6k+5\end{cases}\)

=> 5c - 4b - 3a = 30k + 25 - 16k + 12 - 6k - 3 = 8k + 34

=> 8k + 34 = 50

=> k = 2

=> \(\begin{cases}a=5\\b=5\\c=17\end{cases}\)

3 tháng 4 2020

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)

27 tháng 8 2020

a) Ta có: \(3a=2b\Leftrightarrow\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\) (1)

Và \(4b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\) (2)

Từ (1) và (2) => \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{-a-b+c}{-10-15+12}=\frac{-52}{-13}=4\)

\(\Rightarrow\hept{\begin{cases}a=40\\b=60\\c=48\end{cases}}\)

27 tháng 8 2020

a) \(\hept{\begin{cases}3a=2b\\4b=5c\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{5}=\frac{c}{4}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{a}{10}=\frac{b}{15}\\\frac{b}{15}=\frac{c}{12}\end{cases}\Rightarrow}\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

-a - b + c = -52 => -( a + b - c ) = -52

                         => a + b - c = 52

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b-c}{10+15-12}=\frac{52}{13}=4\)

\(\Rightarrow\hept{\begin{cases}a=40\\b=60\\c=48\end{cases}}\)

b) \(C=\frac{2x^2-5x+3}{2x-1}\)( ĐKXĐ : \(x\ne\frac{1}{2}\))

\(\left|x\right|=\frac{3}{2}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{3}{2}\end{cases}}\)

Với x = 3/2 ( tmđk )

=> C = \(\frac{2\cdot\left(\frac{3}{2}\right)^2-5\cdot\frac{3}{2}+3}{2\cdot\frac{3}{2}-1}=\frac{0}{2}=0\)

Với x = -3/2 ( tmđk )

=> C = \(\frac{2\cdot\left(-\frac{3}{2}\right)^2-5\cdot\left(-\frac{3}{2}\right)+3}{2\cdot\left(-\frac{3}{2}\right)-1}=\frac{15}{-4}=-\frac{15}{4}\)

23 tháng 5 2021

Ta có:

sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)

Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)

có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)

Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)\(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)

MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)

\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)

Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)

Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3

24 tháng 11 2018

  Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

=>a=bk;b=ck;c=dk

Ta có: \(\frac{3a^3-4b^3+5c^3}{3b^3-4c^3+5d^3}=\frac{3\left(bk\right)^3-4\left(ck\right)^3+5\left(dk\right)^3}{3b^3-4c^3+5d^3}\)

                                                  =\(\frac{3b^3.k^3-4c^3.k^3+5d^3.k^3}{3b^3-4c^3+5d^3}=\frac{k^3.\left(3b^3-4c^3+5d^3\right)}{3b^3-4c^3+5d^3}=k^3\)(1)

Ta có: \(\frac{a}{d}=\frac{b.k}{d}=\frac{c.k^2}{d}=\frac{d.k^3}{d}=k^3\)(2)

Từ (1) và (2)=> \(\frac{a}{d}=\frac{3a^3-4b^3+5c^3}{3b^3-4c^3+5d^3}\)

9 tháng 6 2015

Gọi \(\frac{a}{b}=\frac{c}{d}=x\Rightarrow a=bx;c=dx\)

Thay vào vế trái ta được 

\(\frac{3a-5c}{4a+7c}=\frac{3.bx-5.dx}{4.bx+7.dx}=\frac{x\left(3b-5d\right)}{x\left(4b+7d\right)}=\frac{3b-5d}{4b+7d}\)

Vậy vế trái bằng vế phải

10 tháng 6 2015

Ta có:\(\frac{a}{b}=\frac{c}{d}=\frac{3a-5c}{3b-5d}\left(1\right)\)

Ta lại có:\(\frac{a}{b}=\frac{c}{d}=>\frac{4a+7c}{4b+7d}\left(2\right)\)

Từ (1) và (2),suy ra : \(\frac{3a-5c}{4a+7c}=\frac{3b-5d}{4b+7d}\)

Cách của mình cũng đúng nhưng khác cách làm của thang Tam thôi