K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Lời giải:

a)

Ta có: \(A=4x^2-x-2=(2x)^2-2.2x.\frac{1}{4}x+(\frac{1}{4})^2-\frac{33}{16}\)

\(=(2x-\frac{1}{4})^2-\frac{33}{16}\)

\((2x-\frac{1}{4})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A\ge 0-\frac{33}{16}=-\frac{33}{16}\)

Vậy GTNN của $A$ là $\frac{-33}{16}$ khi $x=\frac{1}{8}$

b)

\(B=\frac{2x^2+6x-3}{5}=\frac{2(x^2+3x+\frac{9}{4})-\frac{15}{2}}{5}\)

\(=\frac{2(x+\frac{3}{2})^2-\frac{15}{2}}{5}\geq \frac{2.0-\frac{15}{2}}{5}=\frac{-3}{2}\)

Vậy \(B_{\min}=\frac{-3}{2}\Leftrightarrow (x+\frac{3}{2})^2=0\Leftrightarrow x=\frac{-3}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

c)

\(C=x^4+4x-1\)

\(=x^4-2x^2+1+2x^2+4x-2\)

\(=(x^2-1)^2+2(x^2+2x+1)-4\)

\(=(x^2-1)^2+2(x+1)^2-4\)

\(=(x-1)^2(x+1)^2+2(x+1)^2-4=(x+1)^2[(x-1)^2+2]-4\)

Thấy rằng:

\((x+1)^2\geq 0; (x-1)^2+2>0\Rightarrow (x+1)^2[(x-1)^2+2]\geq 0\)

\(\Rightarrow C\geq 0-4=-4\)

Vậy $C_{\min}=-4$ khi \((x+1)^2=0\Leftrightarrow x=-1\)

d)

\(D=4x^2+\frac{9}{x^2}=(2x)^2+(\frac{3}{x})^2-2.2x.\frac{3}{x}+12\)

\(=(2x-\frac{3}{x})^2+12\geq 0+12=12\)

Vậy $D_{\min}=12$ khi \(2x-\frac{3}{x}=0\Leftrightarrow x=\pm \sqrt{\frac{3}{2}}\)

2 tháng 2 2021

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

2 tháng 2 2021

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

16 tháng 10 2016

Bài 2: Tìm GTNN :​

A= x^2 -2x -4 = x^2 - 2x + 1-1 -4 = (x-1)^2 - 5

A >/ -5

MinA = -5   

B= x^2 -x +5= x^2 -  x + 1/4 - 1/4 +5 = (x-1/2)^2 + 19/4 

B >/  19/4 

MinB = 19/4

C= 4x^2 +2x -9= (2x)^2 + 2x + 1/4 - 1/4 -9 = (2x+1/2)^2 - 37/4 

C >/ -37/4

MinC= -37/4 

\(D=2x^2-4x+7=\left(\sqrt{2}x\right)^2-2\cdot\sqrt{2}x\cdot\sqrt{2}+2-2+7=\left(\sqrt{2}x-\sqrt{2}\right)^2+5\)

D >/ 5

MinD = 5

8 tháng 11 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn ko làm như vậy

a: 

 

Sửa đề: \(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{x^2-9}\right):\left(\dfrac{5}{3-x}-\dfrac{4x+2}{3x-x^2}\right)\)\(P=\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{4x^2}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{5x-4x-2}{x\left(3-x\right)}\)

\(=\dfrac{-x^2-6x-9+x^2-6x+9-4x^2}{\left(x-3\right)\left(x+3\right)}:\dfrac{x-2}{x\left(3-x\right)}\)

\(=\dfrac{-4x^2-12x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(3-x\right)}{x-2}\)

\(=\dfrac{-4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-x\left(x-3\right)}{x-2}=\dfrac{4x^2}{x-2}\)

b: x^2-4x+3=0

=>x=1(nhận) hoặc x=3(loại)

Khi x=1 thì \(P=\dfrac{4\cdot1^2}{1-2}=-4\)

c: P>0

=>x-2>0

=>x>2

d: P nguyên

=>4x^2 chia hết cho x-2

=>4x^2-16+16 chia hết cho x-2

=>x-2 thuộc {1;-1;2;-2;4;-4;8;-8;16;-16}

=>x thuộc {1;4;6;-2;10;-6;18;-14}

NV
5 tháng 4 2021

a.

\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=2013\)

b.

\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)

\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)

\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)

\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

5 tháng 4 2021

em cảm ơn ạ

16 tháng 10 2016

Bài 1: Tìm x: (2x-6)^3 + (5-x)^3 + (1-x)^3 = 0

​Bài 2: Tìm GTNN :​

A= x^2 -2x -4

B= x^2 -x +5

C= 4x^2 +2x -9

D= 2x^2 -4x +7

Giúp tớ với, tớ đang cần gấp