K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 451 người nhận rồi

OK

2 tháng 9 2016

Vì ABCD là hình thang cân nên AB=AD=BC

Tam giác ACD cân tạ C, ta có: góc DAC=góc ADC

Tam giác ABC cân tại B, ta có: góc BAC= góc ACB

Mặt khác: góc ACB= góc ACD (vì góc ACD= góc BAC (so le trong))= gócBCD/2 = góc ADC/2 

Ta có: góc DAB + góc ADC= góc DAC+góc BAC+góc ADC= 2.góc ADC+góc ACD/2=180 độ (vì AB//CD)→ góc ADC=72 độ 

2 tháng 9 2016

Uhm! Câu này khó đấy ! Mình cứ làm không biết có đúng không nhé. Hi 
Đầu tiên bạn vẽ hình ra. 
*Vì đây là hình thang cân nên ta có những điều sau: 
-AB//CD 
-2 đường chéo bằng nhau : AC=BD=CD (theo giả thiết) 
-2 cạnh bên bằng nhau: AD=BC=AB (theo giả thiết) 
-tổng 2 góc đối nhau = 180 độ 
-góc A=B ; góc C=D 
Đặt các góc:ADB=D1 ; BDC=D2 ;ACB=C1 ; ACD=C2 ; DBC=B1 ; ABD=B2 ; DAC=A1 ; CAB = A2 
*AB=AD suy ra tam giác ADB cân tại A nên góc D1=B2. Mặt khác vì AB//CD nên góc D2 = B2 (sole trong) 
=>ADB=ABD=BDC => D1=D2 
*AB=BC suy ra tam giác ABC cân tại B nên góc BAC=BCA. tương tự gocA2=C2 (sole trong) 
=>A2=C1=C2 =>C1=C2 
* Vì gócC=D nên suy ra C1=C2=D1=D2 
* Có C2=D1 và lại có D1=B2 (đã chứng minh ở trên) nên C2=B2 (1) 
* Xét tam giác BDC có BD=CD (theo giả thiết) nên BDC cân suy ra B1 = C = C1+C2 (2) 
* Từ (1) và (2) suy ra B=B1+B2 = C1 + C2 + C2 = 3C2 = 3D2 (vì C2=D2 - CM trên thêm nữa góc D= D1 + D2 = 2D2 ) 
* Mà góc B+D = 180* nên suy ra 3.D2 + 2.D2 = 180* <=> 5.D2=180* <=> D2=36* 
Suy ra D = C = 36 x 2 = 72* 
A = B = 36 x 3 = 108* 

26 tháng 7 2017

*Vì đây là hình thang cân nên ta có những điều sau: 
-AB//CD 
-2 đường chéo bằng nhau : AC=BD=CD (theo giả thiết) 
-2 cạnh bên bằng nhau: AD=BC=AB (theo giả thiết) 
-tổng 2 góc đối nhau = 180 độ 
-góc A=B ; góc C=D 
Đặt các góc:ADB=D1 ; BDC=D2 ;ACB=C1 ; ACD=C2 ; DBC=B1 ; ABD=B2 ; DAC=A1 ; CAB = A2 
*AB=AD suy ra tam giác ADB cân tại A nên góc D1=B2. Mặt khác vì AB//CD nên góc D2 = B2 (sole trong) 
=>ADB=ABD=BDC => D1=D2 
*AB=BC suy ra tam giác ABC cân tại B nên góc BAC=BCA. tương tự gocA2=C2 (sole trong) 
=>A2=C1=C2 =>C1=C2 
* Vì gócC=D nên suy ra C1=C2=D1=D2 
* Có C2=D1 và lại có D1=B2 (đã chứng minh ở trên) nên C2=B2 (1) 
* Xét tam giác BDC có BD=CD (theo giả thiết) nên BDC cân suy ra B1 = C = C1+C2 (2) 
* Từ (1) và (2) suy ra B=B1+B2 = C1 + C2 + C2 = 3C2 = 3D2 (vì C2=D2 - CM trên thêm nữa góc D= D1 + D2 = 2D2 ) 
* Mà góc B+D = 180* nên suy ra 3.D2 + 2.D2 = 180* <=> 5.D2=180* <=> D2=36* 
Suy ra D = C = 36 x 2 = 72* 
A = B = 36 x 3 = 108* 

3 tháng 12 2018

Gợi ý: Kẻ AH ^ CD tại H, kẻ BK ^ CD tại K

Tính được SABCD = 180cm2

14 tháng 6 2021

từ A hạ \(AE\perp DC\)

từ B hạ \(BF\perp DC\)

\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật

\(=>AB=EF=2cm\)

vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)

mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)

\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)

xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)

\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)

15 tháng 6 2021

cảm ơn cậu

 

2. Cho hình thang cân ABCD (AB // CD) cóA D = 3. Tính các góc của hình thang cân.3. Cho hình thang cân ABCD (AB // CD) có AH và BK là hai đường cao của hình thang.a) Chứng minh DH = .2CD AB −b) Biết AB = 6 cm, CD = 14 cm, AD = 5 cm, tính DH, AH và diện tích hình thang cânABCD.4. Cho hình thang cân ABCD (AB//CD) có0 A B = = 60, AB = 4,5cm; AD = BC = 2 cm. Tínhđộ dài đáy CD và diện tích hình thang cân ABCD.5. Cho tam giác ABC cân tại A có BD và CE là hai đường trung...
Đọc tiếp

2. Cho hình thang cân ABCD (AB // CD) có
A D = 3
. Tính các góc của hình thang cân.
3. Cho hình thang cân ABCD (AB // CD) có AH và BK là hai đường cao của hình thang.
a) Chứng minh DH = .
2
CD AB −

b) Biết AB = 6 cm, CD = 14 cm, AD = 5 cm, tính DH, AH và diện tích hình thang cân
ABCD.
4. Cho hình thang cân ABCD (AB//CD) có

0 A B = = 60

, AB = 4,5cm; AD = BC = 2 cm. Tính

độ dài đáy CD và diện tích hình thang cân ABCD.
5. Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác.
Chứng minh BCDE là hình thang cân.
6. Cho tam giác ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh
BCHK là hình thang cân.
7. Cho tam giác ABC cân tại A, có M là trung điểm của BC. Kẻ tií Mx song song với AC cắt AB
tại E và tia My song song với AB cắt AC tại F. Chứng minh:
a) EF là đường trung bình của tam giác ABC;
b) AM là đường trung trực của EF.
8. Cho tam giác ABC, có AM là trung tuyến ứng với BC. Trên cạnh AB lấy điểm D và E sao cho
AD = DE = EB. Đoạn CD cắt AM tại I. Chứng minh:
a) EM song song vói DC;
b) I là trung điểm của AM;

Giúp em với ạ

 

2

Bài 8:

a: Xét ΔDBC có 

E là trung điểm của BD

M là trung điểm của BC

Do đó: EM là đường trung bình của ΔDBC

Suy ra: EM//DC

b: Xét ΔAEM có

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM

Bài 5: 

Xét ΔABC có 

\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)

Do đó: DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà \(\widehat{EBC}=\widehat{DCB}\)

nên BEDC là hình thang cân

Bài 6: 

Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACB}=\widehat{ACD}\)

hay CA là tia phân giác của \(\widehat{BCD}\)

Bài 3: 

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OD=OC

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB

Bài 2: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK và HB=KC

Xét ΔABC có

\(\dfrac{AK}{AB}=\dfrac{AH}{HC}\)

Do đó: KH//BC

Xét tứ gác BKHC có KH//BC

nên BKHC là hình thang

mà KC=BH

nên BKHC là hình thang cân

Bài 2: 

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có 

AB=AC

\(\widehat{A}\) chung

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

Xét ΔABC có 

\(\dfrac{AK}{AB}=\dfrac{AH}{AC}\)

Do đó: HK//BC

Xét tứ giác BCHK có HK//BC

nên BCHK là hình thang

mà HB=KC(ΔAHB=ΔAKC)

nên BCHK là hình thang cân

Bài 3: 

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{OCD}=\widehat{ODC}\)

Xét ΔODC có \(\widehat{OCD}=\widehat{ODC}\)

nên ΔODC cân tại O

Suy ra: OD=OC

Ta có: AO+OC=AC

OB+OD=BD

mà AC=BD

và OC=OD

nên OA=OB