Cho B = 88....8 -9 + n ( CMR B chia hết cho 9)
( n chữ số 8 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 888...8 - 9 + n
n chữ số 8
B = 888...8 - 8n + 9n - 9
n chữ số 8
B = 8.(111...1 - n) + 9.(n - 1)
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà 111...1 có tổng các chữ số là n
n chữ số 1
=> 111...1 - n chia hết cho 9 mà 9.(n - 1) chia hết cho 9
=> B chia hết cho 9 (đpcm)
B = 888...8 - 9 + n
n chữ số 8
B = 888...8 - 8n + 9n - 9
n chữ số 8
B = 8.(111...1 - n) + 9.(n - 1)
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà 111...1 có tổng các chữ số là n
n chữ số 1
=> 111...1 - n chia hết cho 9 mà 9.(n - 1) chia hết cho 9
=> B chia hết cho 9 (đpcm)
a, 995 - 984 + 973 - 962
= (…9 ) - (…6) + (…3) - (…6)
= 0
Số này có tận cùng bằng 0 nên chia hết cho 2 và 5 tick minh nha
1d)Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Ta có: 9999931999 có chữ số tận cùng là 31999 = (34)499. 33 = 81499.27
Ta có: 9999931999=(74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
Tổng các chữ số của B:
8 + 8 + 8 + ... + 8 - 9 + n (n chữ số 8)
= 8n - 9 + n
= 9n - 9
= 9.(n - 1) ⋮ 9
Vậy B ⋮ 9
888...8-9+n
=111...1x8-9+n
=(1+1+1+...+1)x8-9+n
=1xnx8-9+n
=nx9-9 chia het cho 9
Tổng các chữ số là:8+8+.........+8+8(n số 8)+n
=8n+n
=9n chia hết cho 9 nên 888...88(n số 8)+n chia hết cho 9
Vậy A chia hết cho 9