K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

trong SGK lớp 7 trang 29 ý bạn

22 tháng 10 2018

ko co

26 tháng 5 2018

\(a,b,c,d\in N^{\circledast}\) nên \(\left\{{}\begin{matrix}a+b+c< a+b+c+d\\a+b+d< a+b+c+d\\b+c+d< a+b+c+d\\a+c+d< a+b+c+d\end{matrix}\right.\)

Ta có :

\(\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\\ \dfrac{b}{a+b+d}>\dfrac{b}{a+b+c+d}\\ \dfrac{c}{b+c+d}>\dfrac{c}{a+b+c+d}\\ \dfrac{d}{a+c+d}>\dfrac{d}{a+b+c+d}\\ \Rightarrow P>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=1\\ \Rightarrow P>1\left(1\right)\)

\(a,b,c,d\in N^{\circledast}\) nên \(\left\{{}\begin{matrix}a+b+c>d\\a+b+d>c\\b+c+d>a\\a+c+d>b\end{matrix}\right.\)

Ta có :

\(\dfrac{a}{a+b+c}=\dfrac{2a}{\left(a+b+c\right)+\left(a+b+c\right)}< \dfrac{2a}{a+b+c+d}\)

\(\dfrac{b}{a+b+d}=\dfrac{2b}{\left(a+b+d\right)+\left(a+b+d\right)}< \dfrac{2b}{a+b+c+d}\left(a+b+d>c\right)\\ \dfrac{c}{b+c+d}=\dfrac{2c}{\left(b+c+d\right)+\left(b+c+d\right)}< \dfrac{2c}{a+b+c+d}\left(b+c+d>a\right)\\ \dfrac{d}{a+c+d}=\dfrac{2d}{\left(a+c+d\right)+\left(a+c+d\right)}< \dfrac{2d}{a+b+c+d}\left(a+c+d>b\right)\)

Từ đó, ta có :

\(\dfrac{a}{a+b+d}+\dfrac{b}{a+b+d}+\dfrac{c}{b+c+d}+\dfrac{d}{a+c+d}< \\ \dfrac{2a}{a+b+c+d}+\dfrac{2b}{a+b+c+d}+\dfrac{2c}{a+b+c+d}+\dfrac{2d}{a+b+c+d}=2\\ \Rightarrow P< 2\left(2\right)\)

Từ (1) và (2), ta có điều phải chứng minh.

12 tháng 4 2017

CM:$(b+c)(\frac{1}{b}+\frac{1}{c})< \frac{(a+d)^{2}}{ad}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

22 tháng 9 2018

\(a< b=>2a< a+b\\ c< d=>2c< c+d\\ m< n=>2m< m+n\)

Suy ra \(2\left(a+c+m\right)< \left(a+b+c+d+m+n\right)\) do đó:

\(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)

5 tháng 9 2017

1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)

a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc

b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)

5 tháng 9 2017

2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )

Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)

\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )

Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)

\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )

Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

8 tháng 6 2017

1

a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)

\(\Rightarrow ad< bc\)

2

b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)

Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\)\(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)

1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc

1b ) Như trên

2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)

\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)

Vậy 3 số hữu tỉ xen giữa là.................

21 tháng 8 2017

a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)

\(\Rightarrow ad< bc\) ( đpcm. )

b) Vì \(b>0;d>0\) \(\Rightarrow b+d>0\)

Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Leftrightarrow ad< bc\) (*)

Thêm \(ab\) vào \(2\) vế (*), ta có:

\(ab+ad< ba+bc\)

\(a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)

Thêm \(cd\) vào \(2\) vế (*), ta được:

\(ad+cd< cb+cd\)

\(\left(a+c\right).d< c.\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra:

\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( đpcm )

21 tháng 8 2017

a)ta có \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)\(\Rightarrow\)\(\dfrac{a\times d}{b\times d}\)=\(\dfrac{c\times b}{d\times b}\)\(\Rightarrow\)a\(\times\)d=c\(\times\)d\(\Rightarrow\)ad=bc

b)theo câu a ta có \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad=bc\)(1)

Thêm ab vào 2 vế của (1):ad+ab=bc+ab

a(b+d)<b(a+c)\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\)(2)

Thêm cd vào 2 vế của (1):ad+cd<bc+cd

d(a+c)<c(b+d)\(\Rightarrow\)\(\dfrac{a+c}{b+d}< \dfrac{c}{d}\)(3)

Từ(2)và(3)\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

26 tháng 5 2017

Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) => ad < bc (1)

Thêm ab và cả hai vế của (1) :

ad + ab < bc + ab

a(b+d) < b(a+c)

=> \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) (2)

Thêm cd vào hai vế của (1) :

ad + cd < bc + cd

d( a+c) < c( b+d )

=> \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\) (3)

Từ (2) và (3) ta có : \(\dfrac{a}{b}\) < \(\dfrac{a+c}{b+d}\) < \(\dfrac{c}{d}\)

24 tháng 8 2017

Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\)

\(\Rightarrowđpcm\)

25 tháng 8 2017

\(\dfrac{a}{b}< \dfrac{c}{d}\) nên \(ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (đpcm)

Chúc Bạn Học Tốt !!!

1 tháng 4 2017

Vãi Phân

2 tháng 4 2017

Đm không biết thì trả lời làm chi!!!!!!!!!!!!