chứng minh rằng không thể tìm được hai số tự nhiên a, b để: ( 12.a + 36.b ) = 1234
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)245.a+120.b=28764
=>5.49.a+5.24.b=28764
=>5(49a+24b)=28764
Vì 5 chia hết cho 5 =>5(49a+24b) chia hết cho 5 mà 28764 không chia hết cho 5 nên không thể tìm được 2 số tự nhiên a và b thỏa mãn.
b)36.a-12.b=1000
=>3.12.a-12.b=1000
=>12(3a-b)=1000
Vì 12 chia hết cho 12 => 12(3a-b) chia hết cho 12 mà 1000 không chia hết cho 12=>Không thể tìm được hai số tự nhiên a và b thỏa mãn.
Giải:a) mọi ước chung của a và b hiển nhiên là ước của b . Đảo lại, do a chia hết cho b nen b là ước của a và b . Vậy ( a,b)=b
B) Gọi r là số dư trong phép chia a cho b ( a>b). . Ta có a=bk+r(k thuộc N) cần chứng minh rằng ( a, b) = (b,r). Thật vậy ,nếu a và b Cùng chia hết cho d thì r chia hết cho d, do đó ước chung của a và b cũng là ước chung của d và r(1) . Đảo lại nếu nếu b và r cùng chia hết cho d thì a chia hết cho d, do đó ước chung của d và r cũng là ước chung của a và b(2) . Từ (1) và(2) suy ra tập hợp các ước chung của a và b và tập hợp các ước chung của d và r bằng nhau . Do đó hai số lớn nhất trong hai tập hợp bằng nhau, tức là (a,b)=(b,r).
C)72 chia 56 dư 16 nên (72,56)=(56,16)
56 chia 16 dư8 nên ( 56,16)=(16,8)
Mà 16 chia hết cho 8 nên (16,8)=8
Các bạn ơi mình làm đúng 100% k mình nha kẻo mình tốn công viết
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được