Tính
\(A=\sqrt{1+2005+\left(\frac{2005}{2006}\right)^2}+\frac{2005}{2006}\)
Các bạn giải hộ mình nhé ^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{2006^2-2005^2}{2006^2+2005^2}\)
Vậy hai biểu thức trên bằng nhau
Số nào lớn hơn:
\(\left(\frac{2006-2005}{2006+2005}\right)^2hay\frac{2006^2-2005^2}{2006^2+2005^2}\)
Theo tính chất của phân thức ta có:
\(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{2006-2005}{2006+2005}.\frac{2006-2005}{2006+2005}< \frac{2006^2-2005^2}{\left(2006+2005\right)^2}\)
\(=\frac{2006^2-2005^2}{2006^2+2.2006.2005+2005^2}< \frac{2006^2-2005^2}{2006^2+2005^2}\)
Ta có :
\(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{\left(2006-2005\right)^2}{\left(2006+2005\right)^2}=\frac{2006^2-2.2006.2005+2005^2}{2006^2+2.2006.2005+2005^2}=\frac{2006^2-2005^2}{2006^2+2005^2}\)
Vậy \(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{2006^2-2005^2}{2006^2+2005^2}\)
\(\left(\frac{2006-2005}{2006+2005}\right)^2=\frac{1}{\left(2006+2005\right)^2}<\frac{4011}{2006^2+2005^2}=\frac{2006^2-2005^2}{2006^2+2005^2}\)