K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

Để A có giá trị nhỏ nhất thì A = 1 ; 0 

=> x thuộc ( 2018 hoặc 2017)

20 tháng 10 2018

\(A=\left(x-2017\right)^{2018}+2019\)

Ta có: \(\left(x-2017\right)^{2018}\ge0\forall x\)

\(\Rightarrow\left(x-2017\right)^{2018}+2019\ge2019\forall x\)

\(A=2019\Leftrightarrow\left(x-2017\right)^{2018}=0\Leftrightarrow x-2017=0\Leftrightarrow x=2017\)

\(A_{min}=2019\Leftrightarrow x=2017\)

11 tháng 3 2022

\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)

\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)

\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)

\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)

\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)

5 tháng 4 2018

Ta có : 

\(Q\left(x\right)=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|\)

\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|x-2019\right|\right)\)

\(Q\left(x\right)=\left|x-2018\right|+\left(\left|x-2017\right|+\left|2019-x\right|\right)\)

Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có : 

\(\left|x-2017\right|+\left|2019-x\right|\ge\left|x-2017+2019-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi \(\left(x-2017\right)\left(2019-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-2017\ge0\\2019-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2017\\x\le2019\end{cases}}}\)

\(\Rightarrow\)\(2017\le x\le2019\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-2017\le0\\2019-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2017\\x\ge2019\end{cases}}}\) ( loại ) 

Suy ra : \(Q\left(x\right)=\left|x-2018\right|+2\ge2\)

Dấu "=" xảy ra khi \(\left|x-2018\right|=0\)

\(\Leftrightarrow\)\(x-2018=0\)

\(\Leftrightarrow\)\(x=2018\) ( thoã mãn \(2017\le x\le2019\) ) 

Vậy giá trị nhỏi nhất của \(Q\left(x\right)=2\) khi \(x=2018\)

Chúc bạn học tốt ~ 

5 tháng 4 2018

thanks bn nha

3 tháng 3 2020

Ta có: \(A=|x-2017|+x-2018\)

\(\Rightarrow A=|2017-x|+x-2018\)

\(\Rightarrow A\ge2017-x+x-2018=-1\)

Dấu " = " xảy ra \(\Leftrightarrow x\le2017\)

2 tháng 3 2020

Vì \(|x-2017|\)\(\ge\) \(0\)\(\forall x\)

=>  A\(\ge x-2018\forall x\)

Dấu " = " xảy ra khi \(|x-2017|\)=0

=> x= 2017

10 tháng 4 2019

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019}{\left|x-2017\right|+2019}-\frac{1}{\left|x-2017\right|+2019}\)

\(=1-\frac{1}{\left|x-2017\right|+2019}\)

A đạt giá trị nhỏ nhất <=> \(\frac{1}{\left|x-2017\right|+2019}\)Đạt giá trị lớn nhất <=> \(\left|x-2017\right|+2019\)Đạt giá trị bé nhất

Ta co:  \(\left|x-2017\right|\ge0,\forall x\)

<=> \(\left|x-2017\right|+2019\ge0+2019=2019\)

Do đó: \(\left|x-2017\right|+2019\)có giá trị nhỏ nhất là 2019 

'=" xảy ra <=> x-2017=0 <=> x=2017

Vậy min A=\(1-\frac{1}{2019}=\frac{2018}{2019}\)khi và chỉ khi  x=2017

10 tháng 4 2019

k mk nha!

thanks!

nhanha!!!

1 tháng 5 2018

C = ..................................................................... ( giống cái đề bài )

   = ( x + 2017 ) + ( x + 2018 ) + ( x + 2019 )

   = ( x + x + x )  + ( 2017 + 2018 + 2019 )

   = 3x + 6054

Vì ( x + 2017 ) là căn bậc 2 của ( x+2017 )^2 => x+2017 > hoặc = 0

    ( x + 2018 ) ........................... ( x+2018)^2 => x+2018 > hoặc = 0

     ( x + 2019) ............................( x+2019 )^2 => x+2019 > hoặc = 0

SUY RA ( x+2017 ) + ( x+2018 ) + ( x+2019 ) > hoặc = 0 => 3x + 6054 > hoặc = 0

dấu đẳng thức xảy ra <=> 3x + 6054 = 0 <=> 3x = - 6054 <=> x = - 2018

Vậy C có GTNN là 0 khi x = - 2018

10 tháng 3 2016

\(\frac{2017}{2018}\)

10 tháng 3 2016

2017 

2018

11 tháng 4 2018

\(C=\dfrac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\dfrac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=1-\dfrac{1}{\left|x-2017\right|+2019}\)

\(\left|x-2017\right|\ge0\Rightarrow\left|x-2017\right|+2019\ge2019\Rightarrow\dfrac{1}{\left|x-2017\right|+2019}\le\dfrac{1}{2019}\)

\(\Rightarrow C=1-\dfrac{1}{\left|x-2017\right|+2019}\ge1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)

Dấu "=" xảy ra <=> \(\left|x-2017\right|=0\Leftrightarrow x=2017\)

Vậy \(A_{Min}=\dfrac{2018}{2019}\) khi x = 2017

11 tháng 4 2018

cảm ơn bn nhiều

1 tháng 12 2018

123456789

1 tháng 12 2018

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

để A nhỏ nhất => \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất => |x-2016|+2018 nhỏ nhất

\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)

dấu = xảy ra khi |x-2016|=0

=> x=2016

Vậy Min A=\(\frac{2017}{2018}\)khi x=2016

ps: sai sót bỏ qua 

23 tháng 10 2018

Để \(A=\dfrac{2018}{2019-\left|x-2017\right|}\) đạt GTNN

thì \(2019-\left|x-2017\right|\) đạt GTLN

Ta có :

\(\left|x-2017\right|\ge0\)

\(\Leftrightarrow-\left|x-2017\right|\le0\)

\(\Leftrightarrow2019-\left|x-2017\right|\le2019\)

Dấu "=" xảy ra khi : \(\left|x-2017\right|=0\Leftrightarrow x=2017\)

Khi đó : \(A=\dfrac{2018}{2019-\left|2017-2017\right|}=\dfrac{2018}{2019}\)

Vậy \(A_{Min}=\dfrac{2018}{2019}\Leftrightarrow x=2017\)