chứng minh rằng: A=4+2^2+2^3+2^4+..........+2^100 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 22 + 23 + 24 + ... + 220
2A = 23 + 24 + 25 + ... + 221
2A - A = ( 23 + 24 + 25 + ... + 221 ) - ( 22 + 23 + 24 + ... + 220 )
⇒ A + 4 = 221 - 22 + 4 = 221 - 4 + 4 = ( 24 )5 . 2 = ( ...6 )5 . 2 = ( ...6 ) . 2 = ( ...2 )
Vì không có số chính phương nào có tận cùng là chữ số 2 nên A + 4 không phải là số chính phương
Vì 2\(⋮̸\)4
2\(^2\)\(⋮\)4
2\(^{^{ }3⋮}\)4
\(\Rightarrow\)A ko phải là số chính phương (vì Số chính phương chia hết cho số nguyên tố p thì chia hết cho p2)
Vì 2⋮̸4
2\(^2\)\(⋮\)4
2\(^3\)\(⋮\)4
\(\Rightarrow\)A không phải là số chính phương (vì Số chính phương chia hết cho số nguyên tố p thì sẽ chia hết cho p\(^2\))
Ta có:
A=1/3 - 2/3^2+3/3^3 - 4/3^4+ ... - 100/3^100
=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99
=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100
=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99
=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1...
<=>16A=3-101/3^99-100/3^100
<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16
Suy ra A<3/16
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
c) Các số 19932,19942 là số chính phương không chia hết cho 3 nên chia cho 3 dư 1,còn 19922 chia hết cho 3.
Vậy M chia cho 3 dư 2,không là số chính phương.
Các số 19922,19942 là số chính phương chẵn nên chia hết cho 4.
Các số 19932,19952 là số chính phương lẻ nên chia cho 4 dư 1.
Vậy số N chia cho 4 dư 2,không là số chính phương.
trả lời giúp mình nhé