chứng tỏ rằng
a, ( 8^8 +8^20 chia hết cho 17
b, A = 2+2^ 2 +2^3+2^4+...+2^60 chia hết cho 2,3,7,15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a) sai đề phải không là (8^8+2^20) chứ?
a) 8^8+2^20=(2^3)^8+2^20=2^24+2^20=2^20*(2^4+1)=2^20*17 chia hết cho 17(đpcm)
b) A=2+2^2+2^3+...+2^60
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
A=2(1+2)+2^3(1+2)+...+2^59(1+2)
A=2*3+2^3*3+...+2^59*3
A=3(2+2^3+...+2^59) chia hết cho 3
Vì 3 chia hết cho 3 => 3(2+2^3+...+2^59)
Vậy A chia hết cho 3 (đpcm)
Các câu khác làm tương tự
a,
a= 21 + 22 + 23 + ....+ 230
a= ( 21+22 ) + (23 + 24 ) + ...+ ( 229 + 230 )
a = 21 (1+2) + 23(1+2) + ...+ 229(1+2)
a = 21.3 + 23 .3 + ...+ 229 .3
a = 3 ( 21 + 23 + ..+ 229 ) \(⋮\) 3
Vậy a chia hết cho 3
a = 21 + 22 + 23 + ....+ 230
a = ( 21 + 22 + 23 ) + ....+ ( 228 + 229 + 230 )
a = 21(1+2+22) + .....+ 228(1+2+22 )
a = 21 . 7 + ...+ 228.7
a = 7 (21 + ..+228) \(⋮\) 7
Vậy a chia hết cho 7
Vì a chia hết cho 3 và 7 nên a sẽ chia hết cho 21
b,
a = 88 + 220
a = (23)8 + 220
a = 224 + 220
a = 220 . 24 + 220
a=220(24 + 1)
a= 220 . 17 \(⋮\) 17
=> đpcm
a)$10^{28}$1028 chia 9 dư 1
8 chia 9 dư 8
1 + 8 = 9 chia hết cho 9
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 9 (1)
$10^{28}$1028 chia hết cho 8 (vì có 3 chữ số tận cùng là 000 chia hết cho 8)
8 chia hết cho 8
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 8 (2)
Từ (1) và (2) kết hợp với ƯCLN (8,9) = 1 . Suy ra $10^{28}+8$1028+8 chia hết cho 72
b)$8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\times\left(2^4+1\right)=2^{20}\times17$88+220=(23)8+220=224+220=220×(24+1)=220×17 chia hết cho 17
Bài 3:
a: \(3^x=243\)
nên \(3^x=3^5\)
hay x=5
b: \(x^5=32\)
nên \(x^5=2^5\)
hay x=2
c: \(x^6=729\)
\(\Leftrightarrow x^2=9\)
=>x=3 hoặc x=-3
b, B= 2 +22 + 23 + 24 + .... + 260
=> B= 2 . 1 + 2 . 2 + 22 . 2 + 23 . 2 + ..... + 259. 2
=> B= 2. ( 1 + 2 + 22 + 23 + ... + 259)
\(\Rightarrow B⋮2\)
B= 2 +22 + 23 + 24 + .... + 260
=> B = ( 2 +22 ) + ( 23 + 24) + .... + ( 259 + 260)
=> B = 2. ( 1 + 2 ) + 23..( 1 + 2 ) + .... + 259. ( 1 + 2 )
=> B = 3 . ( 2 + 23 + ... + 259)
\(\Rightarrow B⋮3\)
B= 2 +22 + 23 + 24 + .... + 260
=> B = ( 2 +22 + 23 ) + ( 24 + 25 + 26 ) + .... ( 258+ 259+ 260)
=> B= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258. ( 1 + 2 + 22)
B = 7 . ( 2 + 24 + ... + 258)
\(\Rightarrow B⋮7\)
tương tự chia hết cho 15
ghép 4 số và chung là : 1 + 2 + 22 + 23