CMR : Các số sau là hợp số.
a. n = 11.....121....1 (n số 1)
b. n = 2011. 2012. 2013. 2014 +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A là hợp số vì tổng A có tận cùng là 5 thì chia hết cho 5
B là hợp số vì 2011x2013 là 2 số lẻ nhân vs nhau thì tích là 1 số lẻ,2017x2019 cũng vậy.Mà 2 số lẻ cộng vs nhau thì bằng số chẵn,số chẵn thì chia hết cho 2.
C là hợp số vì 15x19x17 là tích các số lẻ nhân vs nhau có kết quả là 1 số lẻ, số lẻ này tận cùng là 5 - 225 thì có tận cùng là 0 sẽ chia hết cho 2.
2 phần cuối mk chưa làm đc bạn thôg cảm nha
Bài 1:
Giải:
Ta có: 2011.2012.2013.2014 = ...4 + 1 =...5
\(\Rightarrow\) A\(⋮\) 5
mà A > 5 \(\Rightarrow\) A là hợp số.
Bài 2:
Giải:
- Nếu p > 3 thì p có dạng: 3k + 1, 3k + 2.
Với p = 3k + 2 thì p + 4 = 3k + 6 \(⋮\) 3 (loại).
Vậy p = 3k + 1. Khi đó:
p + 8 = 3k + 9 \(⋮\) 3
\(\Rightarrow\) p + 8 là hợp số.
Bài 1 : Ta có : \(2011.2012.2013.2014+1>1\)
Mà : \(2011.2012.2013.2014=\overline{...24}\Rightarrow2011.2012.2013.2014+1=\overline{...25}\)
Vì : A có tận cùng bằng 25 \(\Rightarrow A⋮5\Rightarrow A\) là hợp số
Vậy A là hợp số .
Bài 2 : Vì p > 3 \(\Rightarrow\) p chỉ có dạng 3k + 1 và 3k + 2
Với p = 3k + 2 \(\Rightarrow p+4=3k+2+4=3k+6=3\left(k+2\right)⋮3\)( vô lý vì p + 4 nguyên tố )
Với p = 3k + 1 \(\Rightarrow p+8=3k+1+8=3k+9=3\left(k+3\right)⋮3\)
\(\Rightarrow p+8⋮3\Rightarrow p+8\) là hợp số
Vậy p + 8 là hợp số
Ta có :
\(\frac{1}{2013}M=\frac{2013^{2012}+2012}{2013^{2012}+2013}=\frac{2013^{2012}+2013}{2013^{2012}+2013}-\frac{1}{2013^{2012}+2013}=1-\frac{1}{2013^{2012}+2013}\)
Lại có :
\(\frac{1}{2013}N=\frac{2013^{2011}+2012}{2013^{2011}+2013}=\frac{2013^{2011}+2013}{2013^{2011}+2013}-\frac{1}{2013^{2011}+2013}=1-\frac{1}{2013^{2011}+2013}\)
Vì \(\frac{1}{2013^{2012}+2013}< \frac{1}{2013^{2011}+2013}\) nên \(M=1-\frac{1}{2013^{2012}}>N=1-\frac{1}{2013^{2011}+2013}\)
Vậy \(M>N\)
Chúc bạn học tốt ~