K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

a) vì AD vuông góc BC => ADC = ADB =90 

BE vuông góc AC => AEB = BEC =90 

Xét tứ giác ABDE có 

AEB = ADB =90 mà E và D là 2 đỉnh kề => tứ giác nt ( dhnb) 

=> CAD = CBH (góc nt chắn ED) (1)
mà H đối xứng với I qua D => D là trung điểm => BD là trung tuyến của HI

ta lại có AD vuông góc BC tại D => BD vuông góc với HI ( H,I thuộc AD) => BD là đường cao của HI 

xét tam giác BHI có 

BD là trung tuyến của HI

BD là đường cao của HI 

=> tam giác cân => BD là pg góc B = > IBC =CBH (2) 

từ 1 và 2 => CAD = CBI 

b) Xét tam giác AMI và tam giác ADB có 

góc A chung 

ADB = AMI =90 

=> tam giác đồng dạng (gg) => ABD = AIM (2 góc tư) (3)

Gọi GD của CH và AB là F vì 2 đường cao AD và BE cắt nhau tại H => CH là đường cao => CF là đường cao => CF vuông góc AB tại F => CFB =90 

xét tam giác CHD và tam giác CBF có 

góc C chung 

góc ADC = góc CFB =90 

=> đồng dạng (gg) 

=> CHD=CBA (2 góc tư) (4)

ta lại có vì CD vuông góc với HI

CD là trung tuyến của HI => tam giác CHI cân tại C => AIC = CHD (tc) (5)

từ 3-4-5 => AIM = AIC 

1: Ta có: H và D đối xứng nhau qua AB

nên AB là đường trung trực của HD

Suy ra: \(AH=AD\left(1\right)\)

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

Suy ra: \(AH=AE\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra AD=AE

Xét ΔADE có AD=AE

nên ΔADE cân tại A