Tìm GTNN:
P=\(\frac{81x^2+18225x+1}{9x}-\frac{6\sqrt{x}+8}{x+1}\) với x>0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{6\sqrt{x}}{3\sqrt{x}+1}\)
\(A=\left[\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right].\frac{3\sqrt{x}+1}{6\sqrt{x}}\)
\(A=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{6\sqrt{x}}\)
\(A=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}.\frac{1}{6\sqrt{x}}\)
\(A=\frac{\sqrt{x}+1}{6\sqrt{x}-2}\)
\(A=\frac{5}{6}\Leftrightarrow\frac{\sqrt{x}+1}{6\sqrt{x}-2}=\frac{5}{6}\)
\(\Leftrightarrow6\sqrt{x}+6=30\sqrt{x}-10\)
\(\Leftrightarrow24\sqrt{x}=16\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)
\(A=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]\div\frac{6\sqrt{x}}{3\sqrt{x}+1}\)
\(A=\left[\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]\times\frac{3\sqrt{x}+1}{6\sqrt{x}}\)
\(A=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}\times\frac{1}{6\sqrt{x}}\)
\(A=\frac{3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}-1}\times\frac{1}{6\sqrt{x}}\)
\(A=\frac{\sqrt{x}+1}{6\sqrt{x}-2}\)
\(A=\frac{5}{6}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{6\sqrt{x}-2}=\frac{5}{6}\)
\(\Leftrightarrow6\sqrt{x}+6=30\sqrt{x}-10\)
\(\Leftrightarrow24\sqrt{x}=16\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{4}{9}\)
\(dk:x\ne\left\{1,\sqrt{2},4\right\};x\ge0\)dat \(\sqrt{x}=t\)
\(A=\left(\frac{3t^2}{t^2-t-2}+\frac{1}{t-1}+\frac{1}{t-2}\right)\left(t^2-1\right)==\left(\frac{3t^2}{\left(t-2\right)\left(t-1\right)}+\frac{1}{t-1}+\frac{1}{t-2}\right)\left(t^2-1\right)\)
\(=\left(\frac{3t^2}{\left(t-2\right)\left(t-1\right)}+\frac{t-2}{t-1}+\frac{t-1}{t-2}\right)\left(t-1\right)\left(t+1\right)=3t^2+2t-3\)
\(A=3x+2\sqrt{x}-3\)
b
\(\frac{1}{A}=\frac{1}{3x+2\sqrt{x}-3}\Rightarrow\orbr{\begin{cases}3x+2\sqrt{x}-3=-1\\3x+2\sqrt{x}-3=1\end{cases}}\)tư làm tiếp
a) Ta có:
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right)\div\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
\(P=\frac{x-1}{\left(\sqrt{x}-1\right)\sqrt{x}}\div\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\sqrt{x}}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{x-1}{\sqrt{x}}\)
b) Ta có: \(P>0\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}}>0\)
\(\Leftrightarrow\frac{\left(x-1\right)\sqrt{x}}{x}>0\)
\(\Rightarrow\left(x-1\right)\sqrt{x}>0\)
\(\Rightarrow\hept{\begin{cases}x-1>0\\\sqrt{x}>0\end{cases}}\Rightarrow x>1\)
Vậy khi \(x>1\Leftrightarrow P>0\)
c) Ta có: \(P=6\)
\(\Leftrightarrow\frac{x-1}{\sqrt{x}}=6\)
\(\Leftrightarrow x-1=6\sqrt{x}\)
\(\Leftrightarrow\left(x-1\right)^2=36x\)
\(\Leftrightarrow x^2-38x+1=0\)
\(\Leftrightarrow\left(x^2-38x+361\right)-360=0\)
\(\Leftrightarrow\left(x-19\right)^2-\left(6\sqrt{10}\right)^2=0\)
\(\Leftrightarrow\left(x-19-6\sqrt{10}\right)\left(x-19+6\sqrt{10}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-19-6\sqrt{10}=0\\x-19+6\sqrt{10}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=19+6\sqrt{10}\\x=19-6\sqrt{10}\end{cases}}\)