Bài 8. Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. Các đường thẳng BM, DN cắt đường chéo AC tại P, Q.
a) AP=PQ=QC
b) Tứ giác MPNQ là hình gì
c) Xác định tỉ số \(\frac{CA}{CD}\)để MPNQ là hình chữ nhật
d) Xác định \(\widehat{ACD}\)để MPNQ là hình thoi
e) Tam giác ACD thỏa mãn điều kiện gì để MPNQ là hình vuông
a: Xét tứ giác BMDN có
BN//DM
BN=DM
Do đó: BMDN là hình bình hành
Suy ra: BM//DN
Xét ΔAQD có
M là trung điểm của AD
MP//QD
Do đó: P là trung điểm của AQ
=>AP=PQ(1)
Xét ΔCPB có
N là trung điểm của CB
NQ//PB
Do đó: Q là trung điểm của CP
=>AP=PQ=QC
b: Xét ΔAQD có AM/AD=AP/AQ
nên MP//QD và MP=QD/2
Xét ΔCPB có CQ/CP=CN/CB
nên QN//PB và QN=PB/2
Xét ΔOQD và ΔOBP có
góc DOQ=góc BOP
OD=OB
góc ODQ=góc OPB
Do đó: ΔOQD=ΔOBP
=>BP=QD
Ta có: BP+PM=BM
DQ+QN=DN
mà BM=DN; BP=QD
nên PM=QN
Xét tứ giác MPNQ có
MP//NQ
MP=NQ
DO đó: MPNQ là hình bình hành