Cho tam giác ABC có AD là tia phân giác của góc A (D thuộc BC).Tính góc ADB và ADC biết gócB - C =40 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét △ABC có: A + B + C = 180o
=> A + 70o + 40o = 180o
=> A = 70o
Vì AD là phân giác của A
=> BAD = DAC = A/2 = 70o / 2 = 35o
Xét △ABC có: DAC + C + ADC = 180o
=> 35o + 40o + ADC = 180o
=> ADC = 105o
Ta có: ADC + ADB = 180o (2 góc kề bù)
=> 105o + ADB = 180o
=> ADB = 75o
1. Vì AD là phân giác của góc A=> BAD=DAC=36o
Trong TG ADB, ta có: BAD+ABD+ADB=180o
=>ADB=180o-(BAD+ABD)= 180o -111o = 69o
2. Vì AD là phân giác của góc=> BAD=DAC=30o
Ta có: A=BAD+DAC=30o +30o =60o
Trong TG ABC, ta có: A+B+C=180o
=>C=180o -(A+B)=180o-146o =34o
a: \(\widehat{ADB}=\widehat{C}+\widehat{CAD}\)(tính chất góc ngoài)
b: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
Suy ra: \(\widehat{ADB}=\widehat{ADC}\)
c: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
a,Do AD nằm trong góc CDB nên ta có:
ADC + ADB = 180do (ke bu)
ADC + 84 = 180
ADC = 96
B, trong tam giác ADC ta có ;
ADC + ACD+CAD = 180 (định lí tổng ba góc trong tam giác)
96 + 40 + CAD =180
CAD =44
vì AD là phân giác của góc CAB nền CAD= BAD=44,ta co : CAD + DAB = CAB
2CAD = CAB
2 . 44 = CAB
88 = CAB
vì ADC là góc ngoài tại đỉnh A của tam giác ADB nen ta co
ADC = DAB + ABD
96 = 44 + ABD
ABD = 52
Xét \(\Delta ABC\) có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\)\(\widehat{B}+\widehat{C}=180^0-\widehat{A}\)
Do đó :
\(\widehat{B}=\frac{180^0-\widehat{A}+40^0}{2}=\frac{220^0-\widehat{A}}{2}=\frac{220^0-2\widehat{A}_1}{2}=110^0-\widehat{A_1}\)
Xét \(\Delta ADB\) có :
\(\widehat{A_1}+\widehat{B}+\widehat{ADB}=180^0\)
\(\Rightarrow\)\(\widehat{A_1}+110^0-\widehat{A_1}+\widehat{ADB}=180^0\)
\(\Rightarrow\)\(\widehat{ADB}=70^0\)
Mà \(\widehat{ADB}+\widehat{ADC}=180^0\) ( hai góc kề bù )
\(\Rightarrow\)\(70^0+\widehat{ADC}=180^0\)
\(\Rightarrow\)\(\widehat{ADC}=110^0\)
Vậy \(\widehat{ADB}=70^0\) và \(\widehat{ADC}=110^0\)
Chúc bạn học tốt ~