Viết các biểu thức sau về dạng bình phương của 1 biểu thức [\((A + B)^2\) hoặc \((A - B)^2\)]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x2-6x+9
=x2-2.x.3+32
=(x-3)2
b)4x2+4x+1
=(2x)2+2.2x.1+12
=(2x+1)2
c)4x2+12xy+9y2
=(2x)2+2.2x.3y+(3y)2
=(2x+3y)2
d)4x4-4x2+4
=(2x2)2-2.2x2.2+22
=(2x2-2)2
`a, a^2 + 10ab + 25b^2 = (a+5b)^2`
`b, 1 + 9a^2 - 6a = (3a-1)^2`
a) \(a^2+10ab+25b^2\)
\(=a^2+2\cdot5b\cdot a+\left(5b\right)^2\)
\(=\left(a+5b\right)^2\)
b) \(1+9a^2-6a\)
\(=1-6a+9a^2\)
\(=\left(1+3a\right)^2\)
`B=(x/2+y)^3-6(x/2+y)^2z + 6(x+2y)z^2-8z^3`
`=(x/2+y)^3 - 3. (x/2+y)^2 . 2z + 3. (x/2+y) . (2z)^2 - (2z)^3`
`=(x/2+y-2z)^3`
Sửa đề: Δ\(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
Ta có: \(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
\(=\left(\dfrac{1}{2}x+y\right)^2-3\cdot\left(\dfrac{1}{2}x+y\right)^2\cdot2z+3\cdot\left(\dfrac{1}{2}x+y\right)\cdot\left(2z\right)^2-\left(2z\right)^3\)
\(=\left(\dfrac{1}{2}x+y-2z\right)^3\)
a. (x + y)2 = x2 + 2xy + y2
b. (x - 2y)2 = x2 - 4xy - 4x2
c. (xy2 + 1)(xy2 - 1) = x2y4 - 1
d. (x + y)2(x - y)2 = (x2 + 2xy + y2)(x2 - 2xy + y2) = x4 - (2xy + y2)2 = x4 - (4x2y2 + y4) = x4 - 4x2y2 - y4
Chucs hocj toots
Câu 2:
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(x^2+10x+25=\left(x+5\right)^2\)
d: \(9\left(x+1\right)^2-6\left(x+1\right)+1=\left(3x+2\right)^2\)
e: \(\left(x-2y\right)^2-8\left(x-2xy\right)+16x^2=\left(x-2y+4x\right)^2=\left(5x-2y\right)^2\)
a. $x^2+4x+4$
$=x^2+2\cdot x\cdot2+2^2$
$=(x+2)^2$
b. $x^2-6xy+9y^2$
$=x^2-2\cdot x\cdot3y+(3y)^2$
$=(x-3y)^2$
c. $4x^2+12x+9$
$=(2x)^2+2\cdot2x\cdot3+3^2$
$=(2x+3)^2$
d. $x^2-x+\dfrac14$
$=x^2-2\cdot x\cdot \dfrac12+\Bigg(\dfrac12\Bigg)^2$
$=\Bigg(x-\dfrac12\Bigg)^2$
a) \(\left(2x+1\right)^3\)
\(=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\)
\(=8x^3+12x^2+6x+1\)
b) \(\left(x-3\right)^3\)
\(=x^3-3.x^2.3+3.x.3^2-3^3\)
\(=x^3-9x^2+27x-27\)
Bài 2:
a: \(x^3+15x^2+75x+125=\left(x+5\right)^3\)
b: \(1-15y+75y^2-125y^3=\left(1-5y\right)^3\)
c: \(8x^3+4x^2y+\dfrac{3}{2}xy^2+8y^3=\left(2x+2y\right)^3\)
\(x^2-x+\frac{1}{4}\)
\(=x^2-2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{1}{2}\right)^2\)
\(11-6\sqrt{2}=\left(3-\sqrt{2}\right)^2\)
\(6+4\sqrt{2}=\left(2+\sqrt{2}\right)^2\)
Phiền ad có thể trình bày đầy đủ hộ em đc ko ạ? Vì em mới học sáng nay nên trình bày tắt thì em ko hiểu lắm. Em cảm ơn ạ :>