K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2021

Tập xác định của hàm số là nên cả x và -x đều nằm trong tập xác định

f(-x) = -x5 + x3 + 1 

f(-x) ≠ f(x) và f(-x) ≠ - f(x)

Nên hàm số trên ko phải hàm số chẵn cũng ko phải hàm số lẻ

NV
6 tháng 9 2021

TXĐ: D=R

\(y\left(-x\right)=\left(-x\right)^3-5\left(-x\right)=-x^3+5x=-\left(x^3-5x\right)=-y\left(x\right)\)

\(\Rightarrow\) Hàm lẻ

5 tháng 5 2017

Đặt y = f(x) = x3 + x.

+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.

+ f(–x) = (–x)3 + (–x) = –x3 – x = – (x3 + x) = –f(x)

Vậy y = x3 + x là một hàm số lẻ.

28 tháng 9 2017

Đáp án C

17 tháng 2 2018

y = f(x) = 1/x

TXĐ: D = R \{0} ⇒ x ∈ D thì-x ∈ D

f(-x) = 1/(-x) = -1/x = -f(x)

Vậy y = f(x) = 1/x là hàm số lẻ.

11 tháng 10 2018

Tập xác định D = R; ∀ x ∈ D có -x ∈ D và

f ( - x )   =   3 . ( - x ) 2   -   1   =   3 x 2   -   1   =   f ( x )

    Vậy hàm số đã cho là hàm số chẵn.

NV
17 tháng 12 2020

Miền xác định của hàm là miền đối xứng

\(y\left(-x\right)=cot\left(-x\right)-sin\left(-x-1\right)=-cotx+sin\left(x+1\right)\)

\(y\left(-x\right)\ne y\left(x\right)\) mà cũng khác \(-y\left(x\right)\) nên hàm không chẵn không lẻ

16 tháng 12 2018

Đặt y = f(x) = x2 + x + 1.

+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.

+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ x2 + x + 1 = f(x)

+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ –(x2 + x + 1) = –f(x)

Vậy hàm số y = x2 + x + 1 không chẵn, không lẻ.

8 tháng 3 2017

Vậy hàm số đa cho là lẻ

Chọn B.

29 tháng 12 2019

Chọn A.

17 tháng 6 2021

Đặt `y=f(x)=x-sinx`

Có: `f(-x)=-x-sin(-x)=-x+sinx=-(x-sinx)=-f(x)`

`=>` Hàm lẻ.