K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: AB<AC

nên HB<HC

hay \(\left\{{}\begin{matrix}HB< 12.5\left(cm\right)\\HC>12.5\left(cm\right)\end{matrix}\right.\)

Ta có: HB+HC=BC

nên HB=25-HC

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC\left(25-HC\right)=12^2=144\)

\(\Leftrightarrow HC^2-25HC+144=0\)

\(\Leftrightarrow HC=16\left(cm\right)\)

\(\Leftrightarrow HB=9\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{matrix}\right.\)

4 tháng 9 2021

Cảm ơn bạn

27 tháng 10 2021

a: AB=15(cm)

AC=20(cm)

BH=9(cm)
CH=16(cm)

Trả lời:

a, ta có AB^2+AC^2=5^2+12^2=25+144=169
BC^2=13^2=169
=>AB^2+AC^2=BC^2
=>tam giác ABC vuông tại A( định lí pytago đảo)
b, ta có AH ⊥BC
=> tam giác AHB và tam giác AHC vuông tại H
+tam giác AHC có HF là đường cao
=> AH^2=AF.AC(1)
+tam giác AHB có HE là đường cao
=> AH^2=AE.AB(2)
từ(1) và (2)=> AF.AC=AE.AB(=AH^2)
c, ta có AH là đường cao của tam giác ABC
=>AH ⊥BC(*)
+{ HE  ⊥AB=> góc HEA=90*
+{HF ⊥AC=>góc HFA=90*
+{AB ⊥AC=> góc BAC=90*
=> tứ giác AEHF là hình chữ nhật 
lại có AH và EF là đường chéo
=> AH ⊥EF(**)
từ (*)(**) => EF//BC
=> góc AEF=góc ABC(đồng vị)
ΔABC  ∞    ΔAEF(g.g) vì 
góc A chung
góc ABC=góc AEF(cmt)
=>đpcm

Đúng thì k sai thì cho mik xin lỗi

HT

a, ta có AB^2+AC^2=5^2+12^2=25+144=169

BC^2=13^2=169

=>AB^2+AC^2=BC^2

=>tam giác ABC vuông tại A( định lí pytago đảo)

b, ta có AH ⊥BC

=> tam giác AHB và tam giác AHC vuông tại H

+tam giác AHC có HF là đường cao

=> AH^2=AF.AC(1)

+tam giác AHB có HE là đường cao

=> AH^2=AE.AB(2)

từ(1) và (2)=> AF.AC=AE.AB(=AH^2)

c, ta có AH là đường cao của tam giác ABC

=>AH ⊥BC(*)

+{ HE  ⊥AB=> góc HEA=90*

+{HF ⊥AC=>góc HFA=90*

+{AB ⊥AC=> góc BAC=90*

=> tứ giác AEHF là hình chữ nhật 

lại có AH và EF là đường chéo

=> AH ⊥EF(**)

từ (*)(**) => EF//BC

=> góc AEF=góc ABC(đồng vị)

ΔABC  ∞    ΔAEF(g.g) vì 

góc A chung

góc ABC=góc AEF(cmt)

=>đpcm

4 tháng 4 2019

a, Tìm được BH=9cm, CH=16cm, AB=15cm, và AC=20cm

b, Tìm được  A M H ^ ≈ 73 , 74 0

c,  S A H M = 21 c m 2

20 tháng 10 2022

a: Xét ΔAHB vuông tại H có sin B=AH/AB

nên AB=5,96(cm)

=>BH=2,52(cm)

Xét ΔAHC vuông tại H có sin C=AH/AC

nên AC=7,05(cm)

=>HC=4,53(cm)

BC=2,52+4,53=7,05(cm)

C=7,05+7,05+5,96=20,06(cm)

b: góc A=180-58-40=82 độ

Xét ΔBHA vuông tại H có tan A=BH/HA

nên HA=0,56(cm)

Xét ΔBHC vuông tại H có tan C=BH/HC

nên HC=4,77(cm)

=>AC=5,33(cm)

\(S_{ABC}=\dfrac{5.33\cdot4}{2}=10.66\left(cm^2\right)\)

a: Ta có: \(\sin\widehat{B}=\dfrac{1}{3}\)

nên \(\dfrac{AC}{BC}=\dfrac{1}{3}\)

hay BC=3AC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(3\cdot AC\right)^2-AC^2=4^2=16\)

\(\Leftrightarrow8\cdot AC^2=16\)

\(\Leftrightarrow AC^2=2\)

\(\Leftrightarrow AC=\sqrt{2}\left(cm\right)\)

\(\Leftrightarrow BC=3\sqrt{2}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{4\cdot\sqrt{2}}{3\sqrt{2}}=\dfrac{4}{3}\left(cm\right)\)

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên \(AM=\dfrac{BC}{2}=\dfrac{3\sqrt{2}}{2}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHM vuông tại H, ta được:

\(AM^2=AH^2+HM^2\)

\(\Leftrightarrow HM^2=\left(\dfrac{3\sqrt{2}}{2}\right)^2-\left(\dfrac{4}{3}\right)^2=\dfrac{49}{18}\)

hay \(HM=\dfrac{7\sqrt{2}}{6}\left(cm\right)\)

Xét ΔMAH vuông tại H có 

\(\cos\widehat{MAH}=\dfrac{HM}{AM}\)

\(=\dfrac{7\sqrt{2}}{6}:\dfrac{3\sqrt{2}}{2}=\dfrac{7}{9}\)

a: Đặt BH=x; CH=y

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>x*y=144

mà x+y=25

nên x,y là các nghiệm của phương trình:

a^2-25a+144=0

=>a=9 hoặc a=16

=>BH=9cm; CH=16cm

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)

\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

b: ΔABC vuông tại A có AM là trung tuyến

nên AM=BC/2=12,5cm

Xét ΔAHM vuông tại H có sin AMH=AH/AM=24/25

nên \(\widehat{AMH}\simeq74^0\)

c: HM=căn AM^2-AH^2=3,5cm

S AHM=1/2*HM*AH=1/2*12*3,5=21cm2