Cho hai đa thức M = \(10x^2-7x-5\) và N = \(2x-3\). Tìm các số nguyên x mà tại đó giá trị của M chia hết cho giá trị của N
HEO MI PỜ LÍT ! DIU A MAI ÔN LI HỐP !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp)
TH1: x-3 = -5 <=> x = -2
TH2: x-3 = -1 <=> x = 2
TH3: x-3 = 1 <=> x = 4
TH4: x-3 = 5 <=> x = 8
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}
c) Cách 1:
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
\(M⋮N\\ \Rightarrow3x^3+4x^2-7x+5⋮x-3\\ \Rightarrow3x^3-9x^2+13x^2-39x+32x-96+101⋮x-3\\ \Rightarrow3x^2\left(x-3\right)+13x\left(x-3\right)+32\left(x-3\right)+101⋮x-3\\ \Rightarrow x-3\inƯ\left(101\right)=\left\{-101;-1;1;101\right\}\\ \Rightarrow x\in\left\{-98;2;4;104\right\}\)
`M=(10x^2-7x-5)/(2x-3)(x ne 3/2)`
`=(10x^2-15x+8x-12+7)/(2x-3)`
`=(5x(2x-3)+4(2x-3)+7)/(2x-3)`
`=5x+4+7/(2x-3)`
Để `M in ZZ`
`=>7/(2x-3) in ZZ`
`=>2x-3 in Ư(7)={+-1,+-7}`
`=>2x in {2,4,-4,10}`
`=>x in {1,2,-2,5}(tm)`
Vậy `x in {1,2,-2,5}` thì `M in ZZ`.
b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
\(\text{Để }\frac{10x^2-7x-5}{2x-3}nguyên\Rightarrow\left(10x^2-7x-5\right)⋮\left(2x-3\right)\)
\(\text{Ta có }10x^2-7x-5=10x^2-7x-12+7=\left(2x-3\right)\left(5x+4\right)+7\)\(Mà\left(2x-3\right)\left(5x+4\right)⋮\left(2x-3\right)\Rightarrow7⋮\left(2x-3\right)\)
\(\Rightarrow\left(2x-3\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
2x-3 | -7 | -1 | 1 | 7 |
x | -2 | 1 | 2 | 5 |
\(\text{Vậy x }\in\left\{-2;1;2;5\right\}\)