cho hỏi so sánh\(2018^{2019}và2019^{2019}\)
vào trang cá nhân tick mình mình tick lại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)và \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)
Xét \(A=\frac{2019^{2020}+1}{2019^{2021}+1}\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)
Xét \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}=1+\frac{2018}{2019^{2019}+1}\)
Vì \(1+\frac{2018}{2019^{2021}+1}< 1+\frac{2018}{2019^{2019}+1}\Rightarrow\frac{2019^{2020}+1}{2019^{2021}+1}< \frac{2018^{2019}+1}{2019^{2019}+1}\)
\(\Rightarrow A< B\)
Ta có:
\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)
\(\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}\)
\(\Rightarrow2019A=1+\frac{2019}{2019^{2021}+1}\)
\(\Rightarrow A=1+\frac{2019}{2019^{2021}+1}:2019\)
Ta lại có:
\(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)
\(\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}\)
\(\Rightarrow2019B=1+\frac{2019}{2019^{2019}+1}\)
\(\Rightarrow B=1+\frac{2019}{2019^{2019}+1}:2019\)
Do \(2019^{2021}+1>2019^{2019}+1\)
\(\Rightarrow\frac{2019}{2019^{2021}+1}< \frac{2019}{2019^{2019}+1}\)
\(\Rightarrow1+\frac{2019}{2019^{2021}+1}:2019< 1+\frac{2019}{2019^{2019}+1}:2019\)
\(\Rightarrow A< B\)
Vậy \(A< B.\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}>1\)
$#trúc$
`1/2019 + 2/2019 + 3/2019 + 4/2019 + ... + 2018/2019`
= `(1 + 2 + 3 + 4 + ...+ 2018)/2019`
số số hạng là : `(2018 - 1) : 1 + 1 = 2018(số hạng)`
tổng là : `(2018 + 1) xx 2018 : 2= 2037171`
vậy `1/2019 + 2/2019 + 3/2019 + 4/2019 + ... + 2018/2019 = 2037171/2019 = 1009`
20182018 - 20182017= 20182019 - 20182018: Vì
20182018- 20182017 = 20181 và 20182019 - 20182018 = 20181
Do vậy : 20181 = 20181
#)Giải :
Ta có : \(A=\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2019}< 1+1+1\)
\(\Rightarrow A< 3\)
Mình giải thế này cho ngắn gọn, với lại nhanh ^^
\(2019^{2017}=\left(2019^{\frac{2017}{2018}}\right)^{2018}\approx2001,4^{2018}\)
Vì \(2001,4< 2017\Rightarrow2019^{2017}< 2017^{2018}\)
Ta có 5/6 < 6/7
=> (5^2017 . 5) / (6^2018.6)<(5^2017 . 6) / (6^2018.7)
=>5^2018/6^2019< 5^2018+5 /6^2019 +6
vì 2018<2019 nên 20182019 < 20192019
\(2018^{2019}< 2019^{2019}\)