Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x = 2y
x = 2y/3
(x+y)^3 - (x-y)^3 = 126
(2y/3 + y)^3 - (2y/3 - y)^3 = 126
(5y/3)^3 - (-y/3)^3 = 126
125y3/27 - (-y3/27) = 126
125y3/27 + y3/27 = 126
126y3/27 = 126
126y3 = 126 . 27
=> y3 = 27
=> y = 3
3x = 2y
3x = 6
=> x = 2
đầy đủ lắm rùi đó chế mik nha chế
Đặt \(\frac{x-3}{8}=\frac{y}{30}=\frac{z+1}{27}=k\)
\(\Rightarrow x=8k+3,y=30k,z=27k-1\)
Mà 3x-5z+2y=30
Hay 3(8k+3)-5(27k-1)+2(30k)=30
24k+9-135k+5+60k=30
(-51)k+14=30
(-51)k=16
k=16:(-51)
k=\(\frac{-16}{51}\)
\(\Rightarrow x=\frac{-16}{51}\cdot8+3=\frac{25}{51},y=-\frac{16}{51}\cdot30=\frac{-160}{17},z=-\frac{16}{51}\cdot27-1=-\frac{161}{17}\)
Bài 1 :
a, \(\left(x^2-2x+3\right)\left(x-4\right)=0\)
TH1 : \(x^2-2x+3=0\)
\(\left(-2\right)^2-4.3=4-12< 0\)vô nghiệm
TH2 : \(x-4=0\Leftrightarrow x=4\)
b, \(\left(2x^2-3x-1\right)\left(5x+2\right)=0\)
TH1 : \(\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)
\(\Rightarrow x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)
TH2 ; \(5x+2=0\Leftrightarrow x=-\frac{2}{5}\)
c, đưa về hệ đc ko ?
d, \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)=0\)
TH1 : \(x=0,74...\) ( bấm máy cx ra )
TH2 : \(\left(-1\right)^2-4.2.4< 0\)vô nghiệm
KL : vô nghiệm
Bài 2 :
a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-6x^2+5x-6x+5-18x+12=10\)
Vậy biểu thức ko phụ thuộc vào biến
b, \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-yx^3-y^2x^2-y^3x-y^4-x^4y^4\)
\(=x^4-y^4-x^4y^4\)Vậy biểu thức phụ thuộc vào biến
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
a: =-3x^2y*x^2y+3x^2y*2xy
=-3x^4y^2+6x^3y^2
b: =x^3-x^2y+x^2y+y^2=x^3+y^2
c: =x*4x^3-x*5xy+2x*x
=4x^4-5x^2y+2x^2
d: =x^3+x^2y+2x^3+2xy
=3x^3+x^2y+2xy
a)x.y=6
=> x.y=6=1.6=2.3=(-1).(-6)=(-2).(-3)=...
Ta có bảng giá trị sau:
x | 1 | 6 | -1 | -6 | 2 | 3 | -2 | -3 |
y | 6 | 1 | -6 | -1 | 3 | 2 | -3 | -2 |
Vậy (x,y) thuộc {(1;6);(6;1);(-1;-6);(-6;-1);(2;3);(3;2);(-2;-3);(-3;-2)}
b)x.(y-1)=-5
=>x.(y-1)=-5=1.(-5)=5.(-1)
Ta có bảng giá trị sau:
y-1 | -5 | 1 | -1 | 5 |
x | 1 | -5 | 5 | -1 |
y | -4 | 2 | 0 | 6 |
Bạn tự ghi kết quả tương tự như câu a nhé
c)(y-1).(x-2)=7
=>(y-1).(x-2)=7=1.7=(-1).(-7)=...
Ta có bảng giá trị sau:
y-1 | 1 | 7 | -1 | -7 |
x-2 | 7 | 1 | -7 | -1 |
x | 9 | 3 | -5 | -3 |
y | 2 | 8 | 0 | -6 |
Đáp án tự ghi nhé
d)xy+3x-2y=11
xy+3x-2y-6=5
x.(y+3)-2.(y+3)=5
=>(y+3).(x-2)=5
Ta có bảng giá trị sau:
y+3 | 1 | 5 | -1 | -5 |
x-2 | 5 | 1 | -5 | -1 |
x | 7 | 3 | -3 | 1 |
y | -2 | 2 | -4 | 8 |
Bạn làm tương tự câu d nhé,mình mệt lắm rồi.Nếu ko làm được thì bạn hỏi người khác nhé
ĐỪNG QUÊN CHO MÌNH 1 K ĐÚNG
a) vì x.y =6 mà x; y thuộc Z
nên
bảng giá trị
| |||||||||||||||||||