K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

Giúc mk với

12 tháng 10 2018

lên mạng đi bạn

28 tháng 2 2020

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)

\(\Leftrightarrow A< B\)

28 tháng 2 2020

a. tính A = 3+3^2+3^3+3^4+.....+3^100

3A=3^2+3^3+3^4+3^5+....+3^100

3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100

mà B=3^100-1 => A<B

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

Lời giải:

$A=1+4+4^2+4^3+...+4^{99}$

$4A=4+4^2+4^3+4^4+....+4^{100}$

$\Rightarrow 4A-A=4^{100}-1$

$\Rightarrow 3A=4^{100}-1=B-1< B$
$\Rightarrow A< \frac{B}{3}$

8 tháng 3 2017

4A=4+4^2+4^3+4^4+....+4^100

4A-A=4^100-1

=>3A=4^100-1 mà 4^100-1<4^100

=>3A<B  =>A<B/3(đpcm) 

12 tháng 7 2017

Ta có: A = 1+4+4^2+4^3+...+4^99  
=> 4A = 4.(1+4+4^2+4^3+...+4^99)
=> 4A = 4+4^2+4^3+...+4^99+4^100 
=> 4A - A = (4+4^2+4^3+...+4^99+4^100) - (1+4+4^2+4^3+...+4^99) 
=> 3A = 4^100 - 1 
=> A = 4^100-1/3 < 4^100/3 mà B = 4^100 
=> A < 4^100/3 
Bài toán đã được chứng minh.

 

31 tháng 1 2019

bạn ơi chép sai đầu bài

31 tháng 1 2019

ta có: \(A=1+4+4^2+4^3+...+4^{99}\)

\(\Leftrightarrow4A=1.4+4.4+4^2.4+4^3.4+...+4^{99}.4\)

\(\Leftrightarrow4A=4+4^2+4^3+4^4+...+4^{100}\)

\(\Leftrightarrow4A-A=\left(4+4^2+4^3+4^4+...+4^{100}\right)-\left(1+4+4^2+4^3+...+4^{99}\right)\)

\(\Leftrightarrow3A=4^{100}-1\)

\(\Leftrightarrow3A=B-1\)

\(\Leftrightarrow A=\frac{B-1}{3}\)

Mà:\(\frac{B-1}{3}< \frac{B}{3}\)

Nên:\(A< \frac{B}{3}\)

17 tháng 10 2016

Ta có :

A = 1+ 4 + 4 2 + 4 3 +  ... + 4 99

4A = 4 + 4 2 + 4 3 + 4 4 + ... + 4 100

4A - A = ( 4 + 4 2 + 4 3 + 4 4 + ... + 4 100 )

           -  ( 1+ 4 + 4 2 + 4 3 +  ... + 4 99  )

3 A     = 4 100 - 1

   A     = \(\frac{4^{100}-1}{3}\)

\(\frac{4^{100}-1}{3}\)< \(\frac{4^{100}}{3}\)

=> A < \(\frac{B}{3}\)

30 tháng 10 2016

4A = 4 + 42 + 43 + 44 + .. + 4100

4A - A = (4 + 42 + 43 + 44 + .. + 4100) - (1 + 4 + 42 + 43 + ... + 499)

3A = 4100 - 1 < 4100

=> 3A < B => A < B/3

21 tháng 4 2016

\(A=1+4+4^2+...+4^{99}\)(1)

=>\(4A=4+4^2+4^3+...+4^{100}\)(2)

Lấy (2)-(1) ta được 

3A=4100-1

=>A=\(\frac{4^{100}-1}{3}<\frac{4^{100}}{3}=B\)

=>A<B (đpcm)

21 tháng 4 2016

lộn 4^100/3=B/3

=>A<B/3(đpcm)

31 tháng 3 2019

\(A=1+4+4^2+4^3+...+4^{99}\)

\(\Leftrightarrow4A=4+4^2+4^3+4^4...+4^{100}\)

\(\Leftrightarrow4A-A=4+4^2+4^3+4^4...+4^{100}-1-4-4^2-4^3-...-4^{99}\)

\(\Leftrightarrow3A=4^{100}-1\)

\(\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)

Vậy \(A< \frac{B}{3}\left(đpcm\right)\)

13 tháng 8 2018

\(4A=4+4^2+...+4^{100}\)

\(4A-A=\left(4+4^2+...+4^{100}\right)-\left(1+4+...+4^{99}\right)\)

\(3A=4^{100}-1\)

\(A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}=B\left(đpcm\right)\)

13 tháng 8 2018

A = 1 + 4 + 4^2 + 4^3 + ....+ 4^99 

4A = 4 + 4^2 + 4^3 + ..... + 4^100 

4A - A = ( 4 + 4^2 + 4^3 + ..... + 4^100 ) - ( 1 + 4 + 4^2 + 4^3 + .... + 4^99 )

3A = 4^100 - 1 

A = 4^100 - 1 /3 < 4^100/3 

Vậy A < B/3