Cho bỉu thức B = 51824 - n * 9
? B = 7607 thì n = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị của B = 7607.
Ta có : 7607 = 51824 - n x 9
51824 - 7607= n x 9
44217 = n x 9
n = 44217 : 9
n= 4913
Vậy n = 4913
51824-n x 9=7607
n x 9=51824-7607
n x 9=50517
n=50517:9
n=5613
a: \(P=\dfrac{x^2+6x+9-x^2+6x-9-4}{\left(x-3\right)\left(x+3\right)}:\dfrac{3x-1}{x-3}\)
\(=\dfrac{4\left(3x-1\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{3x-1}=\dfrac{4}{x+3}\)
1, \(A=-x^2-2x-4=-\left(x^2+2x+1+3\right)\)
\(=-\left(x+1\right)^2-3\le-3\)
\(\Rightarrow\)A luôn âm
2, tương tự
3, \(C=-x^2-x-1=-\left(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le\dfrac{-3}{4}\)
\(\Rightarrow\)C luôn âm
4, \(D=-2x^2+6x-8=-2\left(x^2-3x+4\right)\)
\(=-2\left(x^2-\dfrac{3}{2}.x.2+\dfrac{9}{4}+\dfrac{7}{4}\right)\)
\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{2}\le\dfrac{-7}{2}\)
\(\Rightarrow D\) luôn âm
5, tương tự
1)
B = -2x2 + 8x - 15
= -2.(x2 - 4x + 4) + 8 - 15
= -2.(x - 2)2 - 7 \(\le\) - 7 với \(\forall\) x
Dấu " =" xảy ra khi (x - 2)2 = 0 => x = 2
Vậy Bmax = - 7 <=> x = 2
2)
C = - 3x2 + 2x - 1
= - 3(x2 - \(2.\dfrac{1}{3}\).x + \(\dfrac{1}{9}\) ) + \(\dfrac{1}{3}\) - 1
= - 3.(x - \(\dfrac{1}{3}\) )2 - \(\dfrac{2}{3}\) \(\le\) - \(\dfrac{2}{3}\) với \(\forall\) x
Dấu " =" xảy ra khi (x - \(\dfrac{1}{3}\) )2 = 0 => x = \(\dfrac{1}{3}\)
Vậy Cmax = - \(\dfrac{2}{3}\) <=> x = \(\dfrac{1}{3}\)
3)
D = - 3x2 + 4x - 1
= - 3(x2 - \(2.\dfrac{2}{3}\).x + \(\dfrac{4}{9}\) ) - \(\dfrac{4}{3}\) - 1
= - 3.(x - \(\dfrac{2}{3}\) )2 - \(\dfrac{7}{3}\) \(\le\) - \(\dfrac{7}{3}\) với \(\forall\) x
Dấu " =" xảy ra khi (x - \(\dfrac{2}{3}\) )2 = 0 => x = \(\dfrac{2}{3}\)
Vậy Dmax = - \(\dfrac{7}{3}\) <=> x = \(\dfrac{2}{3}\)
\(2.B=-2x^2+8x-15=-2\left(x^2-4x\right)-15\)
=> \(B=-\left(x-2\right)^2+8-15=-\left(x-2\right)^2-7\Leftrightarrow B_{Max}=-7\Leftrightarrow x=2\)
\(3.C=-3x^2+2x-1=-\left(3x^2-2x\right)-1\)
=> \(C=-3\left(x^2-\dfrac{2}{3}x\right)-1=-3\left(x-\dfrac{1}{3}\right)^2+\dfrac{1}{3}-1\)
=> \(C=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\Rightarrow C_{Max}=-\dfrac{2}{3}\Leftrightarrow x=\dfrac{1}{3}\)
\(4.D=-3x^2+4x-1=-\left(3x^2-4x\right)-1\)
=> \(D=-3\left(x^2-\dfrac{4}{3}x\right)-1=-3\left(x-\dfrac{2}{3}\right)^2+\dfrac{4}{3}-1=-3\left(x-\dfrac{2}{3}\right)^2-\dfrac{1}{3}\)
=> \(D_{Max}=\dfrac{1}{3}\Leftrightarrow x=\dfrac{2}{3}\)
Thay B=7607 ta có:
51824 - n x 9 = 7607
=>n x 9 = 51824 - 7607
=>n x 9 =44217
=>n = 44217 : 9
=> n =4913
Tick mình nha