K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

\(A=4+4^2+4^3+...+4^{2013}\)

=>  \(4A=4^2+4^3+4^4+...+4^{2014}\)

=>  \(4A-A=\left(4^2+4^3+4^4+...+4^{2014}\right)-\left(4+4^2+4^3+...+4^{2013}\right)\)

=>  \(3A=4^{2014}-4\)

=>  \(3A+4=4^{2014}=\left(4^{1007}\right)^2\)

=>  đpcm

10 tháng 10 2017

\(A=4+4^2+4^3+...+4^{2013}\)

\(A=4+4\left(4+4^2+4^3+...+4^{2016}\right)\)

\(A=4+4\left(A-4^{2013}\right)\Rightarrow A=4+4A-4^{2014}\)

\(3A=4^{2014}-4\)

\(\Rightarrow3A+4=4^{2014}\left(đpcm\right)\)

23 tháng 9 2016

Đáp án là: 33053608165989345 đó

28 tháng 9 2016

Xin thông Báo: nó khó quá!

3 tháng 10 2019

Số số hạng của tổng đã cho là : 

[(2n - 1) - 1] : 2 + 1 = (2n - 2)) : 2 + 1

                               = 2(n - 1) : 2 + 1

                                = n - 1 + 1

                                = n

Trung bình  ộng của tổng là : 

[(2n - 1) + 1]  : 2 = (2n - 1 + 1) : 2 

                           = 2n : 2

                           = n 

Khi đó ; 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) = n.n = n2

Vậy 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) là số chính phương

11 tháng 12 2016

Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa

15 tháng 7 2015

a; Ta có A = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 1 + 8 + 27 + 64 + 125 = 225 = 15^2 

Vì 225 là số chính phương => A là số chính phương

b; B = 3^0 + 3^1 + 3^2 + 3^3 + 3^4 = 1 + 3 + 9 + 27 + 81 = 121 = 11 ^2 

VÌ 121 là số chính phương => B là số chính phương

21 tháng 11 2015

a)

gọi 3 STN liên tiếp là a ;a+1;a+2

=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3

=> .. có

b)

gọi 4 STN liên tiếp là a;a+1;a+2;a+3

=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6

=> ko chia hết cho 4

 

 

2 tháng 12 2023

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

2 tháng 12 2023

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)