K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

Gọi số cần tìm có dạng đại số abc

Các số tự nhiên a,b,c thuộc {1;2;3;4;5;6;7;8;9}không có chứa số 0 vì đề bài yêu cầu khác 0

a có 8 cách

b có 7 cách

c có 6 cách

=> 8.7.6 cách

Theo mình hiểu thì mình giả như vậy, nhưng mình không chắc kết quả đúng

NV
21 tháng 12 2022

1.

Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)

Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách

Tổng cộng: \(4.A_6^4\) cách

2.

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

a.

Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách

Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách

\(\Rightarrow A_6^4-A_5^3=300\) số

b.

Để số được lập là số chẵn \(\Rightarrow\) d chẵn

TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Tổng cộng: \(A_5^3+96=156\) số

Xác suất \(P=\dfrac{156}{300}=...\)

21 tháng 12 2022

cho e hỏi chữ "A" bấm máy sao

15 tháng 12 2017

Đáp án B

Số các số lẻ có 4 chữ số

Chữ số hàng đơn vị có 3 cách chọn

chữ số hàng nghìn có 4 cách chọn

chữ số hàng trăm và hàng chục có lần lượt 4 và 3 cách chọn

Do đó có: 3.4.4.3 = 144 số

Số các số lẻ có 4 chữ số và không có chữ số 3 là

2.3.2.3 = 36

Vậy có 144 - 36 = 108 số

28 tháng 11 2018

Đáp án B

Xét các số lẻ có 4 chữ số được lập từ các số trên có: 3.4.4.3 = 144 số

Xét các số lẻ có 4 chữ số được lập từ 4 số trên và không có mặt chữ số 3 có: 2.3.3.2 = 36 số

Do đó có 144 - 36 = 108 thỏa mãn.

26 tháng 3 2019

Đáp án A

Gọi a 1 a 2 a 3 a 4 ¯  là số lẻ có 4 chữ số khác nhau, với a 1 ,   a 2 ,   a 3 ,   a 4 ∈ { 0 ,   1 ,   2 ,   3 ,   5 ,   8 }  => a4 có 3 cách chọn, a1 có 4 cách chọn, a2 có 4 cách chọn và a3 có 3 cách chọn. Khi đó, có 3.4.4.3 = 144 số thỏa mãn yêu cầu trên.

Gọi b 1 b 2 b 3 b 4  là số lẻ có 4 chữ số khác nhau, với b 1 ,   b 2 ,   b 3 ,   b 4 ∈ 0 ;   1 ;   2 ;   5 ;   8 => b4có 2 cách chọn, b1 có 3 cách chọn, b2 có 3 cách chọn và b3 có 2 cách chọn. Do đó, có 2.3.3.2 = 36 số thỏa mãn yêu cầu trên.

Vậy có tất cả 144 - 36 = 108 số thỏa mãn yêu cầu bài toán.

12 tháng 6 2019

Đáp án là B

2 tháng 3 2018

Xét hai tập hợp A={0;1;2;3;5;8} và B={0;1;2;5;8}.

Xét số có bốn chữ số đôi một khác nhau với các chữ ố lấy từ tập A.

Gọi số cần tìm có dạng a b c d ¯  vì  a b c d ¯  là số lẻ →d={1;3;5}

Khi đó, d có 3 cách chọn, a có 4 cách chọn, b có 4 cách chọn và c có 3 cách chọn.

Do đó, có 3.4.4.3=144 số thỏa mãn yêu cầu trên.

Xét số có bốn chữ số đôi một khác nhau với các chữ số lấy từ tập B.

Gọi số cần tìm có dạng  a b c d ¯ vì  a b c d ¯  là số lẻ →d={1;5}

Khi đó, d có 2 cách chọn, a có 3 cách chọn, b có 3 cách chọn và c có 2 cách chọn.

Do đó, có 2.3.3.2=36 số thỏa mãn yêu cầu trên.

Vậy có tất cả 144-36=108 số cần tìm.

Chọn đáp án B.

31 tháng 12 2019

Đáp án B

Số các số lẻ có 4 chữ số

Chữ số hàng đơn vị có 3 cách chọn, chữ số hàng nghìn có 4 cách chọn, chữ số hàng trăm và hàng chục có lần lượt 4 và 3 cách chọn

Do đó có: 3.4.4.3 = 144  số

Số các số lẻ có 4 chữ số và không có chữ số 3 là 3.4.3 = 36 

Vậy có 144 − 36 = 108  số

NV
25 tháng 12 2020

Các bộ 3 số thỏa mãn: (1;2;7);(1;3;6);(1;4;5);(2;3;5) tổng cộng 4 bộ số

Với mỗi bộ số ta có \(3!\) cách hoán vị

Do đó có: \(3!.4=24\) số

25 tháng 10 2019

Đáp án C

    Trước tiên ta đếm số các số lẻ có bốn chữ số đôi một khác nhau lập được từ các số đã cho: có 3 cách chọn chữ số hàng đơn vị, có 4 cách chọn chữ số hàng nghìn, có  A 4 2 = 6 . 2 cách chọn hai chữ số hàng trăm và hàng chục. Như vậy có 3.4.6.2=144 số như trên.

    Tiếp theo ta đếm số các số lẻ có bốn chữ số đôi một khác nhau và không có mặt chữ số 1: Tương tự trường hợp trên, ta được số các số thuộc loại này là: 2.3.3=18.

Vậy số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau mà phải có mặt số 1 là: 144 - 18 = 126

29 tháng 3 2017

Đáp án A

Trước tiên ta đếm số các số lẻ có bốn chữ số đôi một khác nhau lập được từ các số đã cho: có 3 cách chọn chữ số hàng đơn vị, có 4 cách chọn chữ số hàng nghìn, có . 2 cách chọn hai chữ số hàng trăm và hàng chục. Như vậy có 3.4.6.2=144 số như trên.

Tiếp theo ta đếm số các số lẻ có bốn chữ số đôi một khác nhau và không có mặt chữ số 1: Tương tự trường hợp trên, ta được số các số thuộc loại này là: 2.3.3=18. 

 

Vậy số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau mà phải có mặt số 1 là: 144-18= 126