K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

Ta chứng minh đẳng thức sau :

Nếu a + b + c = 0 ⇒ a3 + b3 + c3 = 3abc

Ta có : a + b + c = 0 ⇒ a + b = -c

⇒ (a + b)3 = (-c)3 ⇒ a3 + 3a2b + 3ab2 + b3 = -c3

⇒ a3 + b3 + c3 = -3a2b - 3ab2 ⇒ a3 + b3 + c3 = -3ab(a + b)

Thay a + b = -c vào -3ab(a + b) ta được:

-3ab(a + b) = -3ab.(-c)= 3abc

Vậy nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc.

Quay trở lại với bài toán, ta có:

x + y + z = -3 ⇒ x + 1 + y + 1 + z + 1 = -3 + 1 + 1 + 1

⇒ ( x + 1) + (y + 1) + (z + 1) = 0

Áp dụng đẳng thức nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc vào bài toán, ta có :

(x + 1) + ( y + 1) + ( z + 1 ) = 0

⇒ ( x + 1 )3 + (y + 1 )3 + ( z + 1 )3 = 3(x + 1)(y + 1)(z + 1)

⇒ Nếu x + y + z = -3 thì :

(x + 1)3 + ( y + 1 )3 + ( z + 1 )3 = 3(x + 1)( y + 1 )(z + 1)

31 tháng 1 2017

áp dụng : nếu x+y+z=0 thì x3+y3+z3=3xyz (có thể tự c/m)

trong bài thì x+y+z+3=0  hay (x+1)+(y+1)+(z+1)=0 

17 tháng 8 2019

Đặt x+1=a,y+1=b,z+1=c

Theo bài ra ta có:

A^3+b^3+c^3=3abc

hay (a+b)^3-3a(b^2-)3(a^2)b+c^3-3abc=0

Hay (a+b)^3+c^3-3ab(a+b+c)=0

Hay (a+b+c)((a+b)^2-(a+b)×c+c^2)-3ab(a+b+c)=0

Hay(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0(1)

Mà x+y+z=-3 hay (x+1)+(y+1)+(z+1)=0 hay a+b+c=0(2)

Từ (1)(2) suy ra 0×(a^2+b^2+c^2-ab-bc-ac)=0

Vậy (1) đúng. Đề bài được cm

17 tháng 8 2019

thanks bn nhiều

9 tháng 1 2018

Ta có :

 \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

Khi đó ta chứng minh được :

\(x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\)

Mà \(x+y+z=0\)

\(\Rightarrow\)\(x^3+y^3+z^3=3xyz\)

Từ đó ta suy ra :

\(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+y^3z^3+z^3x^3\right)}{x^3+y^3+z^3}\)

\(=\frac{\left(3xyz\right)^2-2.3.x^2y^2z^2}{3xyz}\)

\(=\frac{9x^2y^2z^2-6x^2y^2z^2}{3xyz}\)

\(=xyz\)( ĐPCM )

Hên xui thôi

15 tháng 7 2018

ĐK: \(x,y,z,x+y+z\ne0\)

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\Rightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\left(\dfrac{1}{z}-\dfrac{1}{x+y+z}\right)=0\)

\(\Rightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\)

\(\Rightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left(x+y\right)\left(\dfrac{xy+yz+zx+z^2}{xyz\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left(x+y\right)\left(\dfrac{\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

\(\circledast x=-y\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{-y^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{z^3}\)

\(\dfrac{1}{x^3+y^3+z^3}=\dfrac{1}{-y^3+y^3+z^3}=\dfrac{1}{z^3}\)

Vậy \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{x^3+y^3+z^3}\)

Lầm tương tự với hai trường hợp còn lại ta có đpcm haha

11 tháng 11 2019

Làm theo cách giải trình :P

Ta có:

\(\left(x+y+z\right)^2=1^2\)

\(x^2+y^2+z^2+2.\left(xy+yz+xz\right)=1\)

\(1+2.\left(xy+yz+xz\right)=1\)

\(2.\left(xy+yz+xz\right)=0\Rightarrow xy+yz+xz=0\)

\(\left(x+y+z\right).\left(x^2+y^2+z^2\right)=1.1\)

\(x^3+y^3+z^3+x^2.\left(y+z\right)+y^2.\left(x+z\right)+2^2.\left(x+y\right)=1\)

\(1+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=1\)

\(xy.\left(x+y\right)+xz.\left(x+z\right)+yz.\left(y+z\right)=0\)

\(xy.\left(x+y+z-z\right)+xz.\left(x+y+z-y\right)+yz.\left(x+y+z-x\right)=0\)

\(xy.\left(1-z\right)+xz.\left(1-y\right)+yz.\left(1-x\right)=0\)

\(xy+xz+yz-3xyz=0\)

Khi: \(xy+yz+xz0,xyz\)cũng bằng 0

đpcm.

NV
21 tháng 1 2021

\(\left(3^x;3^y;3^z\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ca=abc\end{matrix}\right.\)

BĐT cần chứng minh trở thành:

\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)

Thật vậy, ta có:

\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

\(VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng AM-GM:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3a}{4}\)

Làm tương tự với 2 số hạng còn lại, cộng vế với vế rồi rút gọn, ta sẽ có đpcm

23 tháng 9 2015

a/ => (x + 1)(2x2 - 3x + 6) = 0 

=> x + 1 = 0 => x = -1

hoặc 2x2 - 3x + 6 = 0 

Có denta = (-3)2 - 4.2.6 = -39 < 0 

=> pt vô nghiệm 

Vậy x = -1

b/ => x2 + x = 0 => x(x + 1) = 0 

=> x = 0 hoặc x + 1 = 0 => x = -1

Vì x2 + x + 1 > 0 

Vậy x = 0 ; x = -1

c/ tự làm nha ^^

7 tháng 4 2019

1/y+1/x+1/z=0

=>xy+yz+xz=0(tự cm)

(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2=0

x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+3xyz=3xyz

x^6+y^6+z^6=(x^2+y^2+z^2)(X^4+y^4+z^4+x^2y^2+y^2z^2+z^2z^2)+3(xyz)^2=3(xyz)^2

=> (x^6+y^6+z^6)/(x^3+y^3+z^3)=3(Xyz)^2/3xyz=xyz(dpcm)

7 tháng 4 2019

:D???? ể??

\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-y-z\\y=-z-x\\z=-x-y\end{cases}}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\)

\(\hept{\begin{cases}xy=\left(-y-z\right).y=-y^2-zy\\yz=\left(-x-z\right).z=-z^2-xz\\xz=\left(-y-x\right).x=-x^2-xy\end{cases}}\Rightarrow xy+yz+zx=-\left(x^2+y^2+z^2+xz+xy+zy\right)=0\)

\(\Leftrightarrow x=y=z=0??????\)

p/s: ko biết t lỗi hay đề lỗi ((: