K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

lâu không tương tác xin 1 slot xem sao

2 tháng 4 2018

Dùng nesbit thì ra

14 tháng 7 2021

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\)

\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}\ge\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\)

\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}-\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\ge0\)

\(\Rightarrow\dfrac{1}{x}-\dfrac{2}{\sqrt{xy}}+\dfrac{1}{y}+\dfrac{1}{y}-\dfrac{2}{\sqrt{yz}}+\dfrac{1}{z}+\dfrac{1}{z}-\dfrac{2}{\sqrt{zx}}+\dfrac{1}{x}\ge0\)

\(\Rightarrow\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\right)^2+\left(\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}\right)^2+\left(\dfrac{1}{\sqrt{z}}-\dfrac{1}{\sqrt{x}}\right)^2\ge0\) (luôn đúng)

Dấu = xảy ra khi \(x=y=z\)

8 tháng 12 2023

Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)

\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\) 

(vì \(2013=3.671=3\left(xy+yz+zx\right)\))

\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)

\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)

\(=\dfrac{1}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)

\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)

\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))

Vậy ta có đpcm.

26 tháng 3 2022

không làm đc thì đừng có vào.

26 tháng 3 2022

không làm đc thì đừng có vào.

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Chứng minh gì bạn?

29 tháng 4 2020

Đặt \(H=\frac{xz}{y^2+yz}+\frac{y^2}{zx+yz}+\frac{x+2z}{x+z}\)

\(=\frac{1}{\frac{y^2}{xz}+\frac{yz}{xz}}+\frac{1}{\frac{zx}{y^2}+\frac{yz}{y^2}}+\frac{x+z+z}{x+z}\)

\(=\frac{1}{\frac{y^2}{zx}+\frac{y}{x}}+\frac{1}{\frac{zx}{y^2}+\frac{z}{y}}+\frac{1}{\frac{x}{z}+1}+1\)

Đặt \(\frac{x}{y}=a;\frac{y}{z}=b\Rightarrow ab=\frac{x}{z}\ge1\)

Khi đó \(H=\frac{1}{\frac{b}{a}+\frac{1}{a}}+\frac{1}{\frac{a}{b}+\frac{1}{b}}+\frac{1}{ab+1}+1\)

\(=\frac{a}{b+1}+\frac{b}{a+b}+\frac{1}{ab+1}+1\)

Ta cần chứng minh \(U=\frac{a}{b+c}+\frac{b}{a+b}+\frac{1}{ab+1}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(\frac{a}{b+1}+1\right)+\left(\frac{b}{a+1}+1\right)+\frac{1}{ab+1}\ge\frac{7}{2}\)

\(\Leftrightarrow\frac{a+b+1}{b+1}+\frac{a+b+1}{a+1}+\frac{1}{ab+1}\ge\frac{7}{2}\)

\(\Leftrightarrow\left(a+b+1\right)\left(\frac{1}{b+1}+\frac{1}{a+1}\right)+\frac{1}{ab+1}\ge\frac{7}{2}\)

Khi đó \(Y=\left(a+b+1\right)\left(\frac{1}{a+1}+\frac{1}{b+1}\right)+\frac{1}{ab+1}\)

\(\ge\left(a+b+1\right)\cdot\frac{4}{a+b+2}+\frac{1}{ab+1}\)

\(\ge\frac{4\left(a+b+1\right)}{a+b+2}+\frac{1}{\frac{\left(a+b\right)^2}{4}+1}\)

Đặt \(t=a+b\ge2\sqrt{ab}\ge2\)

Ta cần chứng minh \(\frac{4\left(t+1\right)}{t+2}+\frac{1}{\frac{t^2}{4}+1}\ge\frac{7}{2}\)

\(\Leftrightarrow\frac{\left(t-2\right)^3}{2\left(t+2\right)\left(t^2+4\right)}\ge0\) ( đúng )

Vậy ta có đpcm.

29 tháng 4 2020

ta có:

\(\frac{xz}{y^2+yz}+\frac{y^2}{xz+yz}+\frac{z+2z}{z+x}=\frac{\frac{xz}{yz}}{\frac{y^2}{yz}+1}+\frac{\frac{y^2}{yz}}{\frac{xz}{yz}+1}+\frac{1+\frac{2z}{x}}{1+\frac{z}{x}}\)\(=\frac{\frac{x}{y}}{\frac{y}{z}+1}+\frac{\frac{y}{z}}{\frac{x}{y}+1}+\frac{1+\frac{2z}{x}}{1+\frac{z}{x}}=\frac{a^2}{b^2+1}+\frac{b^2}{a^2+1}+\frac{1+2c^2}{1+c^2}\)

trong đó \(a^2=\frac{x}{y};b^2=\frac{y}{z};c^2=\frac{z}{x}\left(a;b;c>0\right)\)

Nhận xét rằng \(a^2\cdot b^2=\frac{x}{z}=\frac{1}{c^2}\ge1\)(do x>=z)

Xét \(\frac{a^2}{b^2+1}+\frac{b^2}{a^2+1}+\frac{c^2}{ab+1}\)\(=\frac{a^2\left(a^2+1\right)\left(ab+1\right)+b^2\left(b^2+1\right)\left(ab+1\right)-2aba^2\left(a^2+1\right)\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\)

\(=\frac{ab\left(a^2-b^2\right)+\left(a-b\right)\left(a^3-b^3\right)+\left(a-b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)

Do đó: \(\frac{a^2}{b^2+1}+\frac{b^2}{a^2+1}\ge\frac{2ab}{ab+1}=\frac{\frac{2}{c}}{\frac{1}{c}+1}=\frac{2}{1+c}\left(1\right)\)đẳng thức xảy ra <=> a=b

khi đó:

\(\frac{2}{1+c}+\frac{1+2c^2}{c^2+1}-\frac{5}{2}=\frac{2\left[2\left(1+c^2\right)+\left(1+c\right)\left(1+2c^2\right)\right]-5\left(1+c\right)\left(1+c^2\right)}{2\left(1+c\right)\left(1+c^2\right)}\)

\(=\frac{1-3c+3c^2-c^3}{2\left(1+c\right)\left(1+c^2\right)}=\frac{\left(1-c\right)^3}{2\left(1+c\right)\left(1+c^2\right)}\ge0\)(do c=<1) (2)

Từ (1) và (2) => đpcm

Đẳng thức xảy ra <=> a=b, c=1 <=> x=y=z

30 tháng 11 2017

a) BĐT \(\Leftrightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)\ge0\)

suy ra sai đề

b) BĐT \(\Leftrightarrow\dfrac{\left(x-y\right)\left(y-z\right)\left(x-z\right)\left(xy+yz+xz\right)}{xyz}\ge0\) ( đúng vì \(x\ge y\ge z>0\))