Chứng minh 4x2+4x=8y2-2z2+4 không có nghiệm nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-8^4+6x^3-4x^2+2x-1\)
Giả sử \(x\) là nghiệm nguyên
Trường hợp 1 (1)
\(-8^4+6x^3-4x^2+2x-1 \vdots x\)
\(=> 1 \vdots x => x= -1;1\)
Thay \(x\) bằng 1, -1. Ta thấy giá trị của biểu thức sau khi thay khác 0 nên 1 và -1 không phải là nghiệm
Trường hợp 2 : (2)
\(x=0\). Thay x thành 0 cho ra kết quả biểu thức khác không nên 0 không phải nghiệm
=> Từ (1) và (2) suy ra đpcm
Bây giờ mình mới phát hiện là có phần bị khuất mất xin lỗi bạn
Trường hợp 1 (1)
Giả sử đa thức trên chia hết cho x
=> 1 chia hết cho x => x = 1 hoặc -1 (Lấy một ở cuối biểu thức nhe, lí do có phần suy ra này là bởi hiệu các số chia hết cho 1 số a bất kì sẽ chia hết cho số đó, áp dụng lại kiến thức học ở lớp 6)
Thay x thành 1 hoặc -1 ta được kết quả khác 0
Trường hợp 2 ...
Giả sử x=a là nghiệm nguyên f(a)
\(\Leftrightarrow-4a^4+3a^3-2a^2+a-1=0\\ \Leftrightarrow-4a^4-2a^2+4a^3-a\left(a^2-1\right)=1\\ \Leftrightarrow1=-4a^4+4a^3-2a^2-\left(a+1\right)a\left(a-1\right)\left(1\right)\)
Vì a nguyên nên \(\left(a+1\right)a⋮2\Rightarrow\left(a+1\right)a\left(a-1\right)⋮2\)
Mà \(-4a^4+4a^3-2a^2⋮2\)
\(\Rightarrow-4a^4+4a^3-2a^2-\left(a-1\right)a\left(a+1\right)⋮2\) kết hợp (1)
\(\Rightarrow1⋮2\left(VL\right)\)
Vậy không tồn tại nghiệm nguyên của f(x)
Giả sử đa thức P(x) có nghiệm nguyên
=>P(x) có nghiệm chia hết cho 1 hoặc -1
=>1 và -1 là nghiệm
+) Nếu x=1
⇒P(1)=1^4−3.1^3−4.1^2−2.1−1⇒P(1)=1^4-3.1^3-4.1^2-2.1-1
⇒P(1)=1−3.1−4.1−2.1−1⇒P(1)=1-3.1-4.1-2.1-1
⇒P(1)=1−3−4−2−1⇒P(1)=1-3-4-2-1
⇒P(1)=−9≠0⇒P(1)=-9≠0
⇒x=1 không phải là nghiệm của P(x)P(x)
+) Nếu x=−1
⇒P(−1)=(−1)^4−3.(−1)^3−4.(−1)^2−2.(−1)−1⇒P(-1)=(-1)^4-3.(-1)^3-4.(-1)^2-2.(-1)-1
⇒P(−1)=1−3.(−1)−4.1−(−2)−1⇒P(-1)=1-3.(-1)-4.1-(-2)-1
⇒P(−1)=1+3−4+2−1⇒P(-1)=1+3-4+2-1
⇒P(−1)=1≠0⇒P(-1)=1≠0
⇒x=−1 không phải là nghiệm của P(x)P(x)
Vậy P(x) không có nghiệm là số nguyên
=>4x^2+8xy+4y^2+4y^2+4y+1-9=0
=>(2x+2y)^2+(2y+1)^2=9
mà x,y nguyên
nên (2y+1)^2=9 và (2x+2y)^2=0
=>x+y=0 và \(2y+1\in\left\{3;-3\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-1;1\right);\left(2;-2\right)\right\}\)
tớ hk lớp 7 n chưa làm quen vs dạng này bao giờ sorry tớ 0 tl đc
4x2 + 4x = 8y3 - 2z2 +4
=> 4x(x+1) = 8y3 -2(z2-2)
Nhân xét : vế trái chia hết cho 8( vì x(x+1) chia hết cho 2) ; vế phải có 8y3 chia hết cho 8 => 2(z2-2) chia hết cho 8
=> (z2-2) chia hết cho 4 (1) => z chẵn => z2 chia hết cho 4 => (z2-2) không chia hết cho 4 (2)
(1) và (2) => pt đã cho không có nghiệm nguyên