Cho tam giác ABC nhọn có AB>AC.Gọi M,N,P lần lượt là trung điểm của AB,AC,BC.Vẽ đường AH.Chứng minh:
a,MP=NH
b, Gỉa sử MH vuông góc với PN.Chứng minh:MN+PH=AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hướng dẫn nhé.
a. Dễ thấy MN // HP nên NMPH là hình thang.
Xét tam giác vuông AHC có HN là trung tuyến ứng với cạnh huyền nên NH = HC = HA. Vậy thì tam giác NCH cân tại N
\(\Rightarrow\widehat{NHC}=\widehat{NCH}.\)
Do PM // AC nên \(\widehat{MPB}=\widehat{ACB}.\)
Vậy thì \(\widehat{NHC}=\widehat{MPB}\Rightarrow\widehat{NHP}=\widehat{MPH}\)
Vậy hình thang NMPH là hình thang cân.
b. Do NP // AB nên \(HM\perp AB\).
Lại có NMBP là hình bình hành nên NM = PB.
Vậy thì NM + HP = PB + PH = HB.
Xét tam giác AHB có HM là trung tuyến đồng thời đường cao nên nó là tam giác cân. Vậy HA = HB hay HA = MN + HP.
Cho tg ABC vuông tại A, AM là trung tuyến.
Kẻ MN vuông góc AB thì MN // AC. Do M là truung điểm BC nên MN là đường trung bình hay N là trung điểm AB.
Xét tam giác MAB có MN là đường cao đồng thời trung tuyến nên nó cân tại M hay MA = MB. Mà MA = MC nên ta có MA = MB = MC.
(Chính vì thế nên I là tâm đường tròn ngoại tiếp tam giác vuông ABC)
a: Xét ΔABC có
M là trung điểm của AB
P là trung điểm của BC
Do đó: MP là đường trung bình
=>MP=AC/2(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AC/2(2)
Từ (1) và (2) suy ra MP=HN
b:
a, M là trung điểm của AB
P là trung điểm của BC
=> MP là đường trung bình của tam giác ABC
=> MP = \(\frac{1}{2}\) AC (1)
tam giác AHC vuông tại H có N là trung điểm của AC
=> NH = \(\frac{1}{2}\) AC (2)
từ (1) và (2) => MP = NH ( đpcm )
b, M là trung điểm của AB, N là trung điểm của AC
=> MN là đường trung bình của tam giác ABC
=> MN // BC mà MP = NH => MNHP là hình thang cân
lại có MH vuông góc PN
=> MNHP là hình vuông
=> MN = HP
Có P là trung điểm của BC mà MN = \(\frac{1}{2}\) BC ( MN là đường trung bình của tam giác ABC )
=> MN = BP
=> BP = PH
mà BP = PC và 4 điểm B, P, H, C thẳng hàng
=> H trùng với C
=> tam giác ABC vuông tại C
Có AN = NC mà NC = MN = MP ( MNCP hay MNHP vuông )
=> AN + NH ( hay NC ) = MN + PH ( hay PC ) = AH ( AC ) ( đpcm )
Bạn vô câu hỏi tương tự nha , ở đó có cả phần a và phần b
Bài đó được giáo viên giải đấy
Chắc 100% lun !!!
Bạn tự vẽ hình nha ==''
N là trung điểm của AC
=> HN là trung tuyến của tam giác HAC vuông tại H
=> \(HN=\frac{1}{2}AC\) (1)
M là trung điểm của AB
P là trung điểm của BC
=> MP là đường trung bình của tam giác BAC
=> \(MP=\frac{1}{2}AC\) (2)
Từ (1) và (2)
=> MP = NH
M là trung điểm của AB
M là trung điểm của AC
=> MN là trung điểm của tam giác ABC
=> MN // PH
=> MNHP là hình thang
mà MP = HN
=> MNHP là hình thang cân
Chúc bạn học tốt ^^
Ta có: ΔAHC vuông tại H(Gt)
mà HN là đường trung tuyến ứng với cạnh huyền AC(gt)
nên HN=AN
Ta có: ΔAHB vuông tại H(gt)
mà HM là đường trung tuyến ứng với cạnh huyền AB(gt)
nên HM=AM
Xét ΔNAM và ΔNHM có
NA=NH(cmt)
MA=MH(cmt)
NM chung
Do đó: ΔNAM=ΔNHM(c-c-c)
Suy ra: \(\widehat{NAM}=\widehat{NHM}\)(hai góc tương ứng)
mà \(\widehat{NAM}=90^0\)(gt)
nên \(\widehat{NHM}=90^0\)
hay MH\(\perp\)NH(đpcm)
mọi người ơi, cố gắng giúp mk với, bài hơi khó nhg mk tin có bn làm đc,mk đg cần lm nên mong mọi người giúp đỡ mk hoàn thành trg sáng nay, huhu,cảm ơn mọi người trước nhé!