K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

\(\text{Đặt }S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}.\)

\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)

\(\Rightarrow2S-S=S=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)

\(\Rightarrow S=1-\frac{1}{2048}=\frac{2047}{2048}\)

23 tháng 2 2018

Gọi \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

\(\Rightarrow2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)

=> 2A - A = \(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}+\frac{1}{64}\)

\(\Rightarrow A=1+\frac{1}{64}=\frac{65}{64}\)

23 tháng 2 2018

\(=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)+\left(\frac{1}{32}-\frac{1}{64}\right)\)

\(=\frac{2}{4}+\frac{8}{16}+\frac{32}{64}\)

\(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

\(=\frac{1+1+1}{2}=\frac{3}{2}\)

12 tháng 3 2021

Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/2048

     2A = 1 + 1/2 + 1/4 + 1/8 + ... + 1/1024

2A - A = 1 + 1/2 + 1/4 + 1/8 + ... + 1/1024 - 1/2 - 1/4 - 1/8 - 1/16 - ... . 1/2048

       A = 1 - 1/ 2048

      A = 2047 / 2048

Vậy 1/2+ 1/4 + 1/8 + 1/16 + ... + 1/2048 = 2047/2048

28 tháng 12 2016

-1-1/2-1/4-1/8......-1/1024

=-(1+1/2+1/4+1/8...+1/1024)

mà ta có 1024=2^10

nên -(1+1/2+1/4+1/8...+1/1024)

=-(2^9+2^8+2^7....+1)/2^10

=-(1023/1024)

=-1,99.........

19 tháng 1 2017

mình sẽ làm lại bai này cho đúng nha

\(-1-\frac{1}{2}-\frac{1}{4}....-\frac{1}{1024}=-1-\left(\frac{1}{2}+\frac{1}{4}+...\frac{1}{1024}\right)\)

\(=-1-\left(\frac{1}{2^1}+\frac{1}{2^2}...+\frac{1}{2^{10}}\right)\)

\(=-1-\frac{1023}{1024}=\frac{-1024}{1024}-\frac{1023}{1024}=\frac{-2047}{1024}\)

vậy mới đúng nha

29 tháng 3 2016

Đặt tổng trên là A . Ta có:

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)

\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)

\(A=1-\frac{1}{1024}\)

\(A=\frac{1023}{1024}\)

25 tháng 1 2018

Gọi biểu thức trên là \(A\)

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}\)

\(2A=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}\right)\times2\)

\(2A=\frac{1}{2}\times2+\frac{1}{4}\times2+\frac{1}{8}\times2+\frac{1}{16}\times2+...+\frac{1}{512}\times2\)

\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{128}-\frac{1}{256}\)

\(A=1-\frac{1}{256}\)

\(A=\frac{255}{256}\)

25 tháng 1 2018

thank you bạn

29 tháng 7 2017

F=3/4*8/9*15/16*24/25*...*9*10

F=\(\frac{3\cdot8\cdot15\cdot24\cdot...9}{4\cdot9\cdot16\cdot25\cdot...10}\)

F=\(\frac{3\cdot2\cdot15\cdot6}{6\cdot3\cdot8\cdot25}\)

F-\(\frac{2\cdot15}{8\cdot25}\)

F=\(\frac{3}{20}\)

22 tháng 8 2018

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)

\(=1-\frac{1}{64}\)

\(=\frac{63}{64}\)

22 tháng 8 2018

      \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}\)

\(=1-\frac{1}{64}\)

\(=\frac{63}{64}\)

10 tháng 7 2019

\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\)

\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}\)

Số nào xuất hiện 2 lần thì thay thế những số đó bằng số 1.

\(B=\frac{1}{2020}\)

10 tháng 7 2019

B = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2019}\right).\left(1-\frac{1}{2020}\right)\)

    = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2018}{2019}.\frac{2019}{2020}\)

    = \(\frac{1.2.3...2019}{2.3.4..2020}\)(Nếu có 2 thừa số giống nhau lặp lại ở tử số và mẫu số thì rút gọn coi như triệt tiêu hết và không có gì)

   =  \(\frac{1}{2020}\)

19 tháng 5 2021

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(\rightarrow A=\frac{3}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(\rightarrow A=\frac{7}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(\rightarrow A=\frac{15}{16}+\frac{1}{32}+\frac{1}{64}\)

\(\rightarrow A=\frac{31}{32}+\frac{1}{64}\)

\(\rightarrow A=\frac{63}{64}\)

19 tháng 5 2021

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\Rightarrow64A=32+16+8+4+2+1\Rightarrow64A=63\Rightarrow A=\frac{63}{64}\)