K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

=6639082

=5071011

8 tháng 10 2018

6639082

5071011

15 tháng 8 2017

Đáp án D

Số nucleotit gen B: 2A + 2G = 5100 3 , 4 × 2 = 3000  . Và A = 2 3  G → 3A = 2G

→ A = 600, G = 900. Số liên kết hidro: 2A + 3G = 3900.

Gen b thêm 2 liên kết hidro so với gen B → thêm cặp A-T hoặc thay thế 2 cặp A-T bằng 2 cặp G-X.

+ Nếu gen B thêm 1 cặp A-T thành gen b → Gen b có  T = 600 + 1 = 601.

Số T môi trường cung cấp sau 3 lần tái bản: 601 x (23 – 1) = 4207.

+ Nếu thay thế 2 cặp A-T bằng 2 cặp G-X → gen b: T = 598

Số T môi trường cung cấp sau 3 lần tái bản: 598 x (23 – 1) = 4186.

Chọn D

12 tháng 7 2019

Đáp án C

- Tìm số nuclêôtit từng loại và số liên kết H của gen B:

2 A + 2 G = 3000 3 A = 2 G → A = T = 600; G = × = 900

→ H = 2A + 3G = 3900 liên kết.

- Tìm số nuclêôtit từng loại của gen b:

+ Đề cho đột biến điểm và số liên kết H của gen b nhiều hơn 2 liên kết H so với gen B → đây là đột biến dạng thêm một cặp A – T.

+ Gen b: A = T = 601; G = × = 900.

- Gen b nhân đôi 3 lần, số nuclêôtit loại T môi trường cần cung cấp là: 601(23 – 1) = 4207.

7 tháng 3 2022

tóm tắt

xe thứ nhất : 4042 người

xe thứ hai ít hơn : 3902 người

xe thứ hai :... người ?

bài giải 

đoàn xe thứ hai chở số người là :

4042 - 3902 = 140 ( người )

Đ/S 140 người

HT

7 tháng 3 2022

Đoàn xe thứ 2 chở được số người là

4042 - 3902 = 140 (người)

2 đoàn xe chở được số người là

4042 + 140 = 4182 (người)

Đáp số: 4182 người

Sao chép cuộc thi bên olm (do mình tổ chức) qua hoc24.Không biết có bị lỗi front không? *TỔ CHỨC CUỘC THI TOÁN NÂNG CAO CẤP THCS (7-8-9) (khối 6 vẫn có thể tham gia) (lần thứ 3 tổ chức) -------------------------------------------- Bạn nào chưa biết cách thi và thể lệ thì xin xem vòng 1,2 tại đây: + Vòng 1 +Vòng 2 *Về phần giải thưởng,có thay đổi đôi chút! +Giải nhất: 20...
Đọc tiếp

Sao chép cuộc thi bên olm (do mình tổ chức) qua hoc24.Không biết có bị lỗi front không?

*TỔ CHỨC CUỘC THI TOÁN NÂNG CAO CẤP THCS (7-8-9) (khối 6 vẫn có thể tham gia) (lần thứ 3 tổ chức)

--------------------------------------------

Bạn nào chưa biết cách thi và thể lệ thì xin xem vòng 1,2 tại đây:

+ Vòng 1 +Vòng 2

*Về phần giải thưởng,có thay đổi đôi chút!

+Giải nhất: 20 SP

+Giải nhì: 15 SP

+Giải ba: 10 SP

+Giải khuyến khích: 5 SP

Ban tổ chức rất cần sự tài trợ từ các CTV và mọi thành viên olm có trên 100 điểm hỏi đáp.

------------------------------------------------------------------

Bài toán (vòng 3): (thường là lớp 8,nhưng các lớp 7-8-9 đều làm được)

Cho đề: "Cho x và y là hai số dương thay đổi thỏa mãn x+1y 1.Tìm GTNN của biểu thức: M=4x +y. "

Theo bạn,lời giải của một bạn học sinh sau đây có đúng không? Nếu sai hãy chữa lại lỗi sai đó.

"Giải

Từ giả thiết,áp dụng BĐT Cô si cho hai số dương,ta có:

1x+1y 2x.1y 12xy (1)

M=4x +y24x .y=4yx (2)

Nhân theo vế hai BĐT cùng chiều (1) và (2) (vì cả hai vế đều dương) ta được: M8

Dấu "=" xảy ra x=y=1

Vậy giá trị nhỏ nhất của M là 8 tại x = y = 1."

3
2 tháng 12 2018

Thôi chết,bị lỗi front rồi.Mọi người vào đây thi nhé! Vòng 3

2 tháng 12 2018

Đang trong thời gian thi học kì, chắc ko ai rảnh thi đâu bn

1. sank

2. has stolen

3. has fallen

4. have seen

5. have been walking

6. lived

7. Cut

8. had lost

9. visited

10. has lived

11. had worked

12. Has your Dad finished

HT

@Bonnie

14 tháng 11 2021

pppppppppppp

Câu 24: Cho hàm số f(x)f(x) thỏa mãn 2019∫0f(x)dx=1∫02019f(x)dx=1. Tính tích phân I=1∫0f(2019x)dx.I=∫01f(2019x)dx.A. I=0I=0B. I=1I=1C. I=2019I=2019D. I=12019I=12019Câu 25: Trong không gian Oxyz, mặt phẳng (P)(P) đi qua 2 điểm A(1;2;0)A(1;2;0), B(2;3;1)B(2;3;1) và song song với trục OzOz có phương trình làA. x−y+1=0x−y+1=0B. x−y−3=0x−y−3=0C. x+z−3=0x+z−3=0D. x+y−3=0x+y−3=0Câu...
Đọc tiếp

Câu 24: Cho hàm số f(x)f(x) thỏa mãn 20190f(x)dx=1∫02019f(x)dx=1. Tính tích phân I=10f(2019x)dx.I=∫01f(2019x)dx.

A. I=0I=0

B. I=1I=1

C. I=2019I=2019

D. I=12019I=12019

Câu 25: Trong không gian Oxyz, mặt phẳng (P)(P) đi qua 2 điểm A(1;2;0)A(1;2;0)B(2;3;1)B(2;3;1) và song song với trục OzOz có phương trình là

A. xy+1=0x−y+1=0

B. xy3=0x−y−3=0

C. x+z3=0x+z−3=0

D. x+y3=0x+y−3=0

Câu 26: Cho 40f(x)dx=10∫04f(x)dx=10 và 84f(x)dx=6∫48f(x)dx=6. Tính 80f(x)dx.∫08f(x)dx.

A. 20

B. -4

C. 16

D. 4

Câu 27: Họ nguyên hàm của hàm số y=xsinxy=xsin⁡x là

A. xcosxsinx+C−xcos⁡x−sin⁡x+C

B. xcosxsin2x+Cxcos⁡x−sin⁡2x+C

C. xcosx+sinx+C−xcos⁡x+sin⁡x+C

D. xcosxsinx+Cxcos⁡x−sin⁡x+C

Câu 28: Cho số phức z=2+5iz=2+5i. Điểm biểu diễn số phức z  trong mặt phẳng Oxy có tọa độ là

A. (2;5)(2;−5)

B. (5;2)(5;2)

C. (2;5)(2;5)

D. (2;5)(−2;5)

Câu 29: Cho 21f(x)dx=3∫−12f(x)dx=3 và 12g(x)dx=1∫2−1g(x)dx=1. Tính I=21[x+2f(x)3g(x)]dxI=∫−12[x+2f(x)−3g(x)]dx

A. 5252

B. 212212

C. 262262

D. 7272

Câu 30: Trong không gian Oxyz, cho d:x12=y+11=z32d:x−12=y+1−1=z−32. Đường thẳng nào sau đây song song với d?

A.Δ:x22=y1=z12Δ:x−2−2=y1=z−1−2

B. Δ:x32=y+21=z52Δ:x−3−2=y+21=z−5−2

C. Δ:x+12=y1=z12Δ:x+1−2=y1=z−1−2

D. Δ:x22=y1=z12Δ:x−22=y1=z−1−2

Câu 31: Tìm họ nguyên hàm của hàm số f(x)=e5x3.f(x)=e5x−3.

A. f(x)dx=5e5x3+C∫f(x)dx=5e5x−3+C                            

B. f(x)dx=15e5x3+C∫f(x)dx=15e5x−3+C

C. f(x)dx=e5x3+C∫f(x)dx=e5x−3+C                              

D. f(x)dx=13e5x3+C∫f(x)dx=−13e5x−3+C

Câu 32: Tìm các số thực x,yx,y thỏa mãn: x+2y+(2x2y)i=74ix+2y+(2x−2y)i=7−4i

A.x=113,y=13x=113,y=−13

B. x=113,y=13x=−113,y=13

C. x=1,y=3x=1,y=3

D. x=1,y=3x=−1,y=−3

Câu 33: Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm M(1;0;0)M(−1;0;0) và N(0;1;2)N(0;1;2) là

A. x11=y1=z2x−11=y1=z2

B. x+11=y1=z2x+11=y1=z2

C. x1=y11=z+22x1=y−11=z+22

D. x1=y+11=z22x1=y+11=z−22

Câu 34: Trong mặt phẳng tọa độ Oxy, cho điểm A(3;4)A(−3;4) biểu diễn cho số phức z. Tìm tọa độ điểm B biểu diễn cho số phức ω=i¯¯¯zω=iz¯.

A. B(3;4)B(3;−4)

B. B(4;3)B(4;3)

C. B(3;4)B(3;4)

D. B(4;3)B(4;−3)

Câu 35: Cho số phức z=1+3iz=1+3i. Tìm phần thực của số phức z2z2.

A. -8

B. 8+6i8+6i

C. 10

D. 8+6i−8+6i

Câu 36: Cho tích phân I=5312x1dx=aln3+bln5(a,bQ)I=∫3512x−1dx=aln⁡3+bln⁡5(a,b∈Q). Tính S=a+b.S=a+b.

A. S=0S=0

B. S=32S=−32

C. S=1S=1

D. S=12S=12

Câu 37: Tính I=10(2x5)dx.I=∫01(2x−5)dx.

A. -3

B. -4

C. 2

D. 4

Câu 38: Trong không gian Oxyz, cho ba vectơa=(2;0;1),a→=(−2;0;1), b=(1;2;1),b→=(1;2;−1), c=(0;3;4)c→=(0;3;−4). Tính tọa độ vectơ u=2ab+3c.u→=2a→−b→+3c→.

A. u=(5;7;9)u→=(−5;7;9)

B. u=(5;7;9)u→=(−5;7;−9)

C. u=(1;3;4)u→=(−1;3;−4)

D. u=(3;7;9)u→=(−3;7;−9)

Câu 39: Cho f(x)f(x) là hàm liên tục trên RR thỏa mãn f(1)=1f(1)=1 và 10f(t)dt=12∫01f(t)dt=12.  Tính I=π20sin2x.f(sinx)dx.I=∫0π2sin⁡2x.f′(sin⁡x)dx.

A. I=1I=−1

B. I=12I=12

C. I=12I=−12

D. I=1I=1

Câu 40: Cho phương trình z2+bz+c=0z2+bz+c=0 ẩn z và b, c là tham số thuộc tập số thực. Biết phương trình nhận z=1+iz=1+i là một nghiệm. Tính T=b+c.T=b+c.

A. T=0T=0

B. T=1T=−1

C. T=2T=−2

D. T=2T=2

Câu 41: Trong không gian Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d:x22=y33=z+45d:x−22=y−33=z+4−5 và d:x+13=y42=z41.d′:x+13=y−4−2=z−4−1.

A. x2=y23=z31x2=y−23=z−3−1

B. x1=y1=z11x1=y1=z−11

C. x22=y23=z34x−22=y−23=z−34

D. x22=y+22=z32x−22=y+22=z−32

Câu 42: Biết 1+i1+i là nghiệm của phương trình zi+azi+bz+a=0(a,bR)zi+azi+bz+a=0(a,b∈R)ẩn z trên tập số phức. Tìm b2a3.b2−a3.

A. 8

B. 72

C. -72

D. 9

Câu 43: Cho hình phẳng (H)(H) giới hạn bởi parabol y=ax2+1(a>0)y=ax2+1(a>0), trục tung và đường thẳng x=1x=1. Quay (H)(H)quanh trục Ox được một khối tròn xoay có thể tích bằng 2815π2815π. Mệnh đề nào dưới đây đúng?

A. 2<a<32<a<3

B. 0<a<20<a<2

C. 5<a<85<a<8

D. 3<a<53<a<5

Câu 44: Trong không gian Oxyz, cho hai đường thẳng d1:x11=y+11=z2,d1:x−11=y+1−1=z2, d2:x1=y12=z1d2:x1=y−12=z1. Đường thẳng đi qua A(5;3;5)A(5;−3;5) lần lượt cắt d1,d2d1,d2 tại B và C. Độ dài BC là:

A. 19

B. 3232

C. 2525

D. 1919

Câu 45: Trong không gian Oxyz, cho đường thẳng d:x+32=y11=z13d:x+32=y−11=z−1−3. Hình chiếu vuông góc của d trên mặt phẳng (Oyz) là một đường thẳng có vectơ chỉ phương là

A. u=(0;1;3)u→=(0;1;−3)

B. u=(0;1;3)u→=(0;1;3)

C. u=(2;1;3)u→=(2;1;−3)

D. u=(2;0;0)u→=(2;0;0)

Câu 46: Trong không gian Oxyz, cho điểm I(1;0;1)I(1;0;−1) là tâm của mặt cầu (S)(S) và đường thẳng d:x12=y+12=z1d:x−12=y+12=z−1 cắt mặt cầu (S)(S) tại hai điểm A, B sao cho AB=6AB=6. Mặt cầu (S)(S) có bán kính R bằng:

A. 1010

B. 10

C. 2222

D. 22

Câu 47: Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1, tâm trùng gốc tọa độ (hình vẽ). Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ (1x1)(−1≤x≤1) thì được thiết diện là một tam giác đều. Tính thể tích V của vật thể đó.

A. V=πV=π

B. V=433V=433                        

C. V=33V=33

D. V=3V=3

Câu 48: Cho hai số phức z1,z2z1,z2 thỏa mãn |z1|=|z2|=|z1z2|=1|z1|=|z2|=|z1−z2|=1. Tính |z1+z2||z1+z2|.

A. 33                  

B. 3232

C. 1

D. 2323

Câu 49: Xét số phức z thỏa mãn |iz2i2||z+13i|=34|iz−2i−2|−|z+1−3i|=34. Tìm giá trị nhỏ nhất của biểu thức P=|(1i)z+1+i|.P=|(1−i)z+1+i|.

A. Pmin=34Pmin=34

B. Pmin=17Pmin=17

C. Pmin=342Pmin=342

D. Pmin=1317Pmin=1317

Câu 50: Trong không gian Oxyz, cho A(3;1;2),A(3;1;2), B(3;1;0)B(−3;−1;0) và mặt phẳng (P):x+y+3z14=0(P):x+y+3z−14=0. Điểm  M thuộc mặt phẳng (P) sao cho ΔMABΔMAB vuông tại M. Tính khoảng cách từ điểm M đến mặt phẳng Oxy.

A. 1   B. 5   C. 3   D. 4

1
7 tháng 5 2021

các bạn giúp mik với nha mik cảm ơn nhìu

a) Sửa đề: C/m tứ giác BEHC nội tiếp
Xét tứ giác BEHC có 

\(\widehat{BEC}=\widehat{BHC}\left(=90^0\right)\)

\(\widehat{BEC}\) và \(\widehat{BHC}\) là hai góc cùng nhìn cạnh BC

Do đó: BEHC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

2 tháng 6 2022

a) Sửa đề: C/m tứ giác BEHC nội tiếp
Xét tứ giác BEHC có 

ˆBEC=ˆBHC(=900)BEC^=BHC^(=900)

ˆBECBEC^ và ˆBHCBHC^ là hai góc cùng nhìn cạnh BC

Do đó: BEHC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

14 tháng 3 2021

Phép nhân hoá:

Ví dụ: Bác gấu đang bảo vệ những chú hươu khỏi đàn sói hung ác

14 tháng 3 2021

Bông hoa ngã xuống, tàn lụi như đống tro tàn.