Cho ba số thực dương x, y, z thỏa mãn \(x+y=\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2\); \(\sqrt{x}+\sqrt{y}\ne\sqrt{z}\)và \(y\ne z\)
Chứng minh đẵng thức \(\frac{x+\left(\sqrt{x}-\sqrt{z}\right)^2}{y+\left(\sqrt{y}-\sqrt{z}\right)^2}=\frac{\sqrt{x}-\sqrt{z}}{\sqrt{y}-\sqrt{z}}\)
\(\frac{x+\left(\sqrt{x}-\sqrt{z}\right)^2}{y+\left(\sqrt{y}-\sqrt{z}\right)^2}=\frac{\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2-y+\left(\sqrt{x}-\sqrt{z}\right)^2}{\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2-x+\left(\sqrt{y}-\sqrt{z}\right)^2}\)
\(=\frac{\left(\sqrt{x}+2\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)+\left(\sqrt{x}-\sqrt{z}\right)^2}{\left(2\sqrt{x}+\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)+\left(\sqrt{y}-\sqrt{z}\right)^2}\)
\(=\frac{\left(\sqrt{x}-\sqrt{z}\right)\left(2\sqrt{x}+2\sqrt{y}-2\sqrt{z}\right)}{\left(\sqrt{y}-\sqrt{z}\right)\left(2\sqrt{x}+2\sqrt{y}-2\sqrt{z}\right)}\)
\(=\frac{\sqrt{x}-\sqrt{z}}{\sqrt{y}-\sqrt{z}}\)