Giải giúp mình với, mình đang cần gấp
Ai giải được mình cho kẹo nè
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $n^4+4n^2-1=a^2$ với $a$ là số tự nhiên
$\Leftrightarrow (n^2+2)^2-5=a^2$
$\Leftrightarrow 5=(n^2+2)^2-a^2=(n^2+2-a)(n^2+2+a)$
Do $n^2+2+a\geq n^2+2-a$ với $a\geq 0$ và $n^2+2+a>0$ nên:
$n^2+2+a=5$ và $n^2+2-a=1$
$\Rightarrow 2(n^2+2)=6\Rightarrow n^2+2=3$
$\Leftrightarrow n^2=1$
$\Rightarrow n=\pm 1$
đổi: 1kg = 1000g.
số kẹo còn lại là:
1000 - 400 = 600 ( g )
mỗi hộp chứa số kẹo là:
600 : 3 = 200 ( g )
đáp số: 200g kẹo
Đổi 1 kg = 1000g
Sau khi mẹ thưởng cho em, số kẹo mẹ còn lại là:
1000 - 400 = 600 (g)
Mỗi hộp có chứa số gam kẹo là:
600 : 3 = 200 (g)
Đáp số: 200g
10D.
Hai đường thẳng (D) và (D') cùng đi qua điểm (0;-2) nên chúng không bao giờ song song nhau
11.A
\(x^2+2x+2=\left(x+1\right)^2+1>0;\forall x\in R\)
12.C
Hai đồ thị cắt nhau tại 1 điểm trên trục tung khi:
\(3m+2=3+2m\Rightarrow m=1\)
10D.
Hai đường thẳng (D) và (D') cùng đi qua điểm (0;-2) nên chúng không bao giờ song song nhau
11.A
x2+2x+2=(x+1)2+1>0;∀x∈Rx2+2x+2=(x+1)2+1>0;∀x∈R
12.C
Hai đồ thị cắt nhau tại 1 điểm trên trục tung khi:
3m+2=3+2m⇒m=1
a: Xét ΔSBM và ΔSNB có
\(\widehat{SBM}=\widehat{SNB}\)
\(\widehat{BSM}\) chung
Do đó: ΔSBM\(\sim\)ΔSNB
Suy ra: SB/SN=SM/SB
hay \(SB^2=SM\cdot SN\)
b: Xét (O) có
SA là tiếp tuyến
SB là tiếp tuyến
Do đó: SA=SB
mà OA=OB
nên SO là đường trung trực của AB
=>SO⊥AB
Xét ΔOBS vuông tại B có BH là đường cao
nên \(SH\cdot SO=SB^2=SM\cdot SN\)
a) \(\Leftrightarrow x^4-4x-1=0\)
\(\Leftrightarrow x^4+2x^2+1-2x^2-4x-2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)
\(\Leftrightarrow x^2+1=\sqrt{2}\left(x+1\right)\)
\(\Leftrightarrow x^2-\sqrt{2}x-\sqrt{2}+1=0\)
Tự giải pt bậc 2 nhak :))))
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
Bài 1:
(x-6)^2020+2(y+3)^2022=0
=>x-6=0 và y+3=0
=>x=6 và y=-3
PTHH : 2Al + 6HCl --> 2AlCl3 + 3H2 ↑ (1)
nAlCl3 = \(\dfrac{m}{M}=\dfrac{13,35}{27+35,5.3}=0.1\left(mol\right)\)
Từ (1) => nHCl = 2nH2 = 0.2 (mol)
=> mHCl = n.M = 0.2 x 36.5 = 7.3 (g)
\(PTHH:2Al+6HCl\rightarrow2AlCl_3+3H_2\\ n_{AlCl_3}=\dfrac{m}{M}=\dfrac{13,35}{133,5}=0,1\left(mol\right)\\ Theo.PTHH:n_{HCl}=3.n_{AlCl_3}=3.0,1=0,3\left(mol\right)\\ m_{HCl}=n.M=0,3.36,5=10,95\left(g\right)\)