Cho a,b là hai số hữu tỉ dương.
So sánh \(\frac{a}{b}\)và \(\frac{a+2}{b+2}\). Cho 2 ví dụ cụ thể
GIúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét a(b + 2) và (a + 2)b
Ta có: a(b + 2) - (a + 2)b = 2a - 2b
- Nếu a>b thì \(\frac{a}{b}>\frac{a+2}{b+2}\)
- Nếu a<b thì \(\frac{a}{b}< \frac{a+2}{b+2}\)
Ví dụ: \(\frac{1}{5}\)và \(\frac{3}{7}\). Ta có: \(\frac{1}{5}< \frac{3}{7}\)
\(\frac{10}{7}\)và \(\frac{12}{9}\). Ta có: \(\frac{10}{7}>\frac{12}{9}\)
Vì dụ 5: Để so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\) , ta đi so sánh giữa 2 số a (b+1) và b(a+1) .
Xét hiệu: a(b+1) - b(a+1) = ab+ a - (ab +b) = a-b. Ta có 3 trường hợp, với điều kiện b >0:
Trường hợp 1: Nếu a-b = 0 \(\Leftrightarrow\)a = b thì :
a(b+1) - b(a+1) = 0\(\Leftrightarrow\)a(b+1) = b(a+1)
\(\Leftrightarrow\)\(\frac{a\left(b+1\right)}{b\left(b+1\right)}\)= \(\frac{b\left(a+1\right)}{b\left(b+1\right)}\)\(\Leftrightarrow\frac{a}{b}\)=\(\frac{a+1}{b+1}\).
Trường hợp 2: Nếu a - b< 0 \(\Leftrightarrow\)a < b thì:
a(b+1) - b(a+1)< 0\(\Leftrightarrow\)a(b+1) < b(a+1)
\(\Leftrightarrow\)\(\frac{a\left(b+1\right)}{b\left(b+1\right)}\)< \(\frac{b\left(a+1\right)}{b\left(b+1\right)}\)\(\Leftrightarrow\)\(\frac{a}{b}\)< \(\frac{a+1}{b+1}\).
Trường hợp 3: Nếu a-b> 0 \(\Leftrightarrow\) a > b thì:
a(b+1) - b(a+1) > 0 \(\Leftrightarrow\)a(b+1) > b(a+1)
\(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(b+1\right)}\)>\(\frac{b\left(a+1\right)}{b\left(b+1\right)}\)\(\Leftrightarrow\frac{a}{b}\)>\(\frac{a+1}{b+1}\).
Ví dụ 6: Bg: Gọi khối lượng của niken, kẽm và đồng theo thứ tự m1, m2, m3. Từ giả thiết ta có: m1+m2+m3 = 150 kg.
\(\frac{m_1}{3}\) =\(\frac{m_2}{4}=\frac{m_3}{13}\Rightarrow\frac{m_1}{3}=\frac{m_2}{4}=\frac{m_3}{13}=\)\(\frac{m_1+m_2+m_3}{3+4+13}=\frac{150}{20}=7,5\)
Từ đó, suy ra m1 = 3.7,5 = 22,5kg, m2 = 4.7,5 = 30 kg và m3 = 13.7,5 = 97,5kg .
Vd 3:
a) 9/10 > 5/42 b) -4/27 < 10/-73
Vd 4:
5/-6: -7/12; 5/8; 3/4
Vd 5:
x<y
Vd 6:
-16/27= -16/27> -16/29
a, Để x là số nguyên
=> a - 5 chia hét cho a
Vì a chia hết cho a
=> -5 chia hết cho a
=> a \(\in\){1; -1; 5; -5}
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+bn}{b\left(b+n\right)}\)
TH1: a = b
=> an = bn
=> ab+an = ab+bn
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
TH2: a > b
=> an > bn
=> ab + an > ab + bn
=> \(\frac{a}{b}>\frac{a+n}{b+n}\)
TH3: a < b
=> an < bn
=> ab + an < ab + bn
=> \(\frac{a}{b}
Xét:
+) a,<b\(\Rightarrow ab+2a< ab+2b\)
\(\Leftrightarrow a\left(b+2\right)< b\left(a+2\right)\)
\(\frac{\Rightarrow a}{b}< \frac{a+2}{b+2}\)
Vd :
a=2 , b=3 thì:
\(\frac{2}{3}< \frac{2+2}{3+2}=\frac{4}{5}\)
Tương tự xét với a> b; a=b