mọi người ơi ới ời !!!!!!!!!
làm zúp mik đê
tìm x , y, z :
a. 2/3 x = 3/4y; 2y=1/5z và x+y+z = 1
b.(y+z+1)/x=(x+z+2)/y=(x+y-3)/z=x+y+z
c.2x)/3=3y/4=4z/5 và x+y+z=-98
d.x-1)/2=y-2)/3=z-3)/4 và 2x +3y-z=50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x:y:z=3:5:\left(-2\right)\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=-\dfrac{16}{4}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-4\right).3=-12\\y=\left(-4\right).5=-20\\z=\left(-4\right).\left(-2\right)=8\end{matrix}\right.\)
Ta có : \(A=x^2+y^2+z^2-2x-4y+6z=-14\)
\(\Leftrightarrow x^2+y^2+z^2+2x-4y+6z+14=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2+6z+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\left(1\right)\)
Do \(\left(x+1\right)^2\ge0\forall x;\left(y-2\right)^2\ge0\forall y;\left(z+3\right)^2\ge0\forall z\)
\(\Rightarrow\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\forall x;y;z\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\\z+3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\\z=-3\end{matrix}\right.\)
\(\Rightarrow x+y+z=-1+2-3=-2\)
Vậy \(x+y+z=-2\)
Ta có : \(\frac{x-2}{5}=\frac{3-y}{7}=\frac{\left(x-2\right)-\left(3-y\right)}{5-7}=\frac{x-2-3+y}{-2}\) \(=\frac{x+y-5}{-2}=\frac{-2}{-2}=1\)
Nên : \(\frac{x-2}{5}=1\Rightarrow x-2=5\Rightarrow x=7\)
\(\frac{3-y}{7}=1\Rightarrow3-y=7\Rightarrow y=-4\)
Vậy x = 7 ; y = -4
\(\frac{x-2}{5}=\frac{3-y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x-2}{5}=\frac{3-y}{7}=\frac{x-2-3+y}{5-7}=\frac{3-2-3}{5-7}=\frac{-2}{-2}=1\)
\(\Rightarrow\hept{\begin{cases}x-2=5\\3-y=7\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=-4\end{cases}}\)
a/
Vì x và y là hai đại lượng tỉ lệ nghịch nên
=>x.y=a
=>-2.(-15)=a
=>a=30
Vậy x và y tỉ lệ nghịch với nhau theo hệ số tỉ lệ là 30.
b/Vì x và y tỉ lệ nghịch với nhau nên
=>x.y=a
Vậy để biểu diễn y theo x,ta có:
y=a/x
c/
y1=-30
x2=1
x3=2
x4=3
c) \(2x=3y=5z\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng tính chát dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒\(\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)
a) Áp dụng t/c dtsbn:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
b) \(\dfrac{3}{x}=\dfrac{7}{y}\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Và \(x+16=y\Rightarrow y-x=16\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{y-x}{7-3}=\dfrac{16}{4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.3=12\\y=4.7=28\end{matrix}\right.\)
Mấy bài này khó :( nghĩ được bài nào làm bài đấy nhé, bạn thông cảm
a, Dùng phương pháp kẹp
Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow x^3+x^2+x+1>x^3\)
\(\Rightarrow y^3>x^3\)
\(\Rightarrow y>x\)(1)
Xét hiệu \(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-y^3\)
\(=x^3+6x^2+12x+8-x^3-x^2-x-1\)
\(=5x^2+11x+7\)
\(=5\left(x+\frac{11}{10}\right)^2+\frac{19}{20}>0\forall x\)
\(\Rightarrow\left(x+2\right)^3>y^3\)
\(\Rightarrow x+2>y\)(2)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow x< y< x+2\)
Mà \(x;y\inℤ\Rightarrow y=x+1\)
Thế vào pt ban đầu đc \(x^3+x^2+x+1=\left(x+1\right)^3\)
\(\Leftrightarrow x^3+x^2+x+1=x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x=0\)
\(\Leftrightarrow2x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(tm\right)}\)
*Với x = 0 => y= 1
*Với x = -1 => y = 0
Vậy ...