\(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+40\)
giải pt vô tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b2
\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)
Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)
Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)
và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Do đó \(VT\ge VF\)
Dấu = xảy ra khi\(x=\frac{1}{2}\)
\(pt\Rightarrow\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2-x\\ \Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=\left(2-x\right)^2\\ \Leftrightarrow x+\dfrac{1}{4}+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{4}=\left(x-2\right)^2\\ \Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=\left(x-2\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=x-2\left(1\right)\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2-x\left(2\right)\end{matrix}\right.\)
Tới đây giải \(pt\left(1\right)\left(2\right)\), sau đó thế lại vào cái pt ban đầu, từ đó nhận hoặc loại nghiệm tìm được
( Không giải được 2 cái kia thì cmt nhắc nha )
ĐKXĐ: \(x\ge-\dfrac{1}{4}\)
Ta có: \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}+2\cdot\sqrt{x+\dfrac{1}{4}}\cdot\dfrac{1}{2}+\dfrac{1}{4}}=2\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)
\(\Leftrightarrow x+\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\)
\(\Leftrightarrow x+\dfrac{1}{4}+2\cdot\sqrt{x+\dfrac{1}{4}}\cdot\dfrac{1}{2}+\dfrac{1}{4}=2\)
\(\Leftrightarrow\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=-2\\\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+\dfrac{1}{4}}=-\dfrac{5}{2}\left(loại\right)\\\sqrt{x+\dfrac{1}{4}}=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow x+\dfrac{1}{4}=\dfrac{9}{4}\)
hay x=2(thỏa ĐK)
Vậy: x=2
Điều kiện xác định tự làm nha b.
Đặt \(\hept{\begin{cases}\sqrt{2+x}=a\\\sqrt{2-x}=b\end{cases}}\)
\(\Rightarrow a^2+4b^2=10-3x\)
Từ đây ta có pt trở thành
\(3a-6b+4ab-a^2-4b^2=0\)
\(\left(a-2b\right)\left(a-2b-3\right)=0\)
Tới đây đơn giản rồi b làm tiếp nhé
91 nhé
đặt \(\sqrt{4-x^2}=y\)
ta có phương trình \(\left(x+y\right)=2+3xy\)
bình lên rồi phân tích còn cái vừa nãy tớ nhầm bài khác xin lỗi
a.
ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)
\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)
Pt trở thành:
\(729\left(t^4-2t^2+1\right)+8t=36\)
\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)
\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)
\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)
b.
ĐKXĐ: ...
\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)
Đặt \(\sqrt{10+4x-x^2}=t\ge0\)
\(\Rightarrow-3t^2-5t+42=0\)
\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{10+4x-x^2}=3\)
\(\Leftrightarrow x^2-4x-1=0\)
\(\Leftrightarrow x=...\)
Đk: \(x\ge-5\)
2 vế dương bình phương lên
\(2^2\sqrt{\left(x+5\right)^2}=\left(x+2\right)^2\)
\(\Leftrightarrow4\left(x+5\right)=x^2+4x+4\)
\(\Leftrightarrow4x+20=x^2+4x+4\)
\(\Leftrightarrow16-x^2=0\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\left(tm\right)\\x=-4\left(loai\right)\end{array}\right.\)
xét vế trái :
\(\sqrt[]{x-2}+\sqrt{10-x}=< \sqrt{2\left(x-2+10-x\right)}=< 4\)
=>vp=<4
=>\(x^2-12x+40=< 4\)
=>\(\left(x-6\right)^2=< 0\)
=> xảy ra dấu = <=>x=6
vậy pt có nghiệm là 6
\(\sqrt{x-2}\)+\(\sqrt{x-10}\)= x\(^2\)-12x+36+4
<=>\(\sqrt{x-2}\)+\(\sqrt{x-10}\)-4=(x-6)\(^2\)
<=>(\(\sqrt{x-2}\)-2)+(\(\sqrt{x-10}\)-2)=(x-6)\(^2\)
<=>\(\dfrac{x-6}{\sqrt{x-2}+2}\)-\(\dfrac{x-6}{\sqrt{x-10}+2}\)-(x-6)\(^2\)=0
Nghiệm x = 6
Mk cũng k biết đúng hay k nữa ! !
Em thử sử dụng phương pháp :Dùng BĐT ạ!
ĐKXĐ: \(2\le x\le10\)
Áp dụng BĐT Bunykovski: \(VT=\sqrt{x-2}+\sqrt{10-x}\le\sqrt{2\left(x-2+10-x\right)}=4\)
Lại có: \(VP=\left(x^2-12x+36\right)+4=\left(x-6\right)^2+4\ge4\)
Từ đó suy ra \(VT\le4\le VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-2}=\sqrt{10-x}\\x-6=0\end{matrix}\right.\Leftrightarrow x=6\)