K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

23 tháng 11 2021

\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)

23 tháng 11 2021

a,( 1;5 )

b, ( 1; 2; 4)

c (1;3 )

17 tháng 8 2016

a) n + 2 chia hết cho n - 1

=> n - 1 + 3 chia hết cho n - 1

Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1

Mà n thuộc N => n - 1 > hoặc = -1

=> n - 1 thuộc {-1 ; 1 ; 3}

=> n thuộc {0 ; 2 ; 4}

Những câu còn lại lm tương tự

17 tháng 8 2016

Giải:

a) \(n+2⋮n-1\)

\(\Rightarrow\left(n-1\right)+3⋮n-1\)

\(\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)

+) \(n-1=1\Rightarrow n=2\)

+) \(n-1=-1\Rightarrow n=0\)

+) \(n-1=3\Rightarrow n=4\)

+) \(n-1=-3\Rightarrow n=-2\)

Vậy \(n\in\left\{2;0;4;-2\right\}\)

b) \(2n+7⋮n+1\)

\(\Rightarrow\left(2n+2\right)+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)

+) \(n+1=1\Rightarrow n=0\)

+) \(n+1=-1\Rightarrow n=-2\)

+) \(n+1=3\Rightarrow n=2\)

+) \(n+1=-3\Rightarrow n=-4\)

Vậy \(n\in\left\{0;-2;2;-4\right\}\)

5 tháng 7 2018

Vì 3 n chia hết cho (5-2n)

=>2.3n+3(5-2n)=15 chia hết cho 5-2n

=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}

Mặt khác 5-2n nhỏ hơn hoặc bằng 5

5-2n thuộc {-15,-5,-3,-1,1,3,5}

=>N thuộc { 10,5,4,3,2,1,0}

Vì 3n chia hết cho 5-2n

=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n

=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}

Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5

=>5-2n€{-15,-5,-3,-1,1,3,5}

=>N€{10,5,4,3,2,1,0}

1 tháng 10 2016

Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1) 
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1) 
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên 
3/(n-1) nguyên khi (n-1) là Ước của 3 
khi (n-1) ∈ {±1 ; ±3} 
xét TH thôi : 
n-1=1 =>n=2 (tm) 
n-1=-1=>n=0 (tm) 
n-1=3=>n=4 (tm) 
n-1=-3=>n=-2 (loại) vì n ∈N 
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1 
--------------------------------------... 
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(... 
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên 
khi n+1 ∈ Ước của 5 
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1 
vậy n+1 ∈ {1;5} 
Xét TH 
n+1=1=>n=0 (tm) 
n+1=5>n=4(tm) 
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1 

d))Vì 3n chia hết cho 5-2n 
=>2.3n+3(5-2n)=15 chia hết cho 5-2n 
=>5-2n thuộc Ư(15)={±1;±3;±5;±15} 
Mặt khác:5-2n≤5(do n≥0) 
=>5-2n thuộc {-15;-5;-3;-1;1;3;5} 
=>n thuộc {10;5;4;3;2;1;0} 
)Vì 3n chia hết cho 5-2n 
=>2.3n+3(5-2n)=15 chia hết cho 5-2n 
=>5-2n thuộc Ư(15)={±1;±3;±5;±15} 
Mặt khác:5-2n≤5(do n≥0) 
=>5-2n thuộc {-15;-5;-3;-1;1;3;5} 
=>n thuộc {10;5;4;3;2;1;0} 

1 tháng 10 2016

bạn có thể làm theo cách khác ko vì mình chưa học tới số nguyên hay ước và bội

9 tháng 1 2016

1) 2n+7=2(n+1)+5

để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1

=> n+1\(\in\) Ư(5) => n\(\in\){...............}

bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa

Từ bài 2-> 4 áp dụng như bài 1

4 tháng 1 2021

Ta có 2n+7=2(n+1)+5

Vì 2(n+1

Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1

Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}

Lập bảng n+1 I 1 I 5

                  n   I 0 I 4

Vậy n "thuộc tập hợp" {0;4}

24 tháng 9 2021

\(a,\Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ b,\Rightarrow n+3+5⋮n+3\\ \Rightarrow5⋮n+3\\ \Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ c,\Rightarrow2\left(2n-1\right)-3⋮2n-1\\ \Rightarrow3⋮2n-1\\ \Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-1;0;1;2\right\}\\ d,\Rightarrow8-n+4⋮8-n\\ \Rightarrow4⋮8-n\\ \Rightarrow8-n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow n\in\left\{12;10;9;7;6;4\right\}\)