cho a>0,b>0 và a2 +b2 =1.Tìm giá trị lớn nhất của biểu thức : S =ab+2(a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{\left(a+b\right)^2-a^2-b^2}{2}+2\left(a+b\right)\)
\(S=\frac{\left(a+b\right)^2+4\left(a+b\right)-1}{2}\)
\(S=\frac{\left\{\left(a+b\right)-2\right\}^2+5}{2}\)
S>=\(\frac{5}{2}\) xay ra dau = khi va chi khi a+b=2 dua vao day tim a,b
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
a) x2 + 1 ≤ (x - 2)2 ⇔ x2 + 1 ≤ x2 - 4x + 4 ⇔ 4x ≤ 3
⇔ x ≤ 3/4
Vậy: x ≤ 3/4
b) a, b > 0
Ta có: a + b = 1 suy ra: (a + b)2 = 1 ⇒ a2 + 2ab + b2 = 1 (1)
Mặt khác (a - b)2 ≥ 0 với mọi a, b ⇒ a2 - 2ab + b2 ≥ 0 (2)
Cộng (1) và (2) vế theo vế, ta được:
2a2 + 2b2 ≥ 1 ⇒ 2(a2 + b2) ≥ 1 ⇒ a2 + b2 ≥ 1/2
Bài 2:
Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001
=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996
2M= ( a+b-2)2 + (a-1)2 +(b-1)2 + 3996
=> MinM = 1998 tại a=b=1
Câu 3:
Ta có: P= x2 +xy+y2 -3.(x+y) + 3
=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)
2P = ( x+y-2)2 +(x-1)2+(y-1)2
=> MinP = 0 tại x=y=1
\(S=ab+2\left(a+b\right)\le\frac{a^2+b^2}{2}+2\sqrt{2\left(a^2+b^2\right)}=\frac{1}{2}+2\sqrt{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)