So sánh A và B,biết:
A=2×2×2×2×...×2(50 số 2)
B=5×5×5×...×5(20 số 5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a:b=2\dfrac{2}{5}:\dfrac{4}{5}=\dfrac{12}{5}\cdot\dfrac{5}{4}=3:1\)
b) \(a:b=7.7:1.1=7:1\)
c) \(a:b=\dfrac{0.7\cdot100}{50}=\dfrac{70}{50}=\dfrac{7}{5}\)
d) \(a:b=\dfrac{3}{5}\cdot\dfrac{100}{120}=\dfrac{1}{2}\)
e) \(a:b=\dfrac{\dfrac{3}{2}\cdot60}{\dfrac{1}{2}}=3\cdot60=180:1\)
g) \(a=66\dfrac{2}{3}\%m=\dfrac{200}{3}\cdot\dfrac{1}{100}m=\dfrac{2}{3}m\)
\(b=0.5\%km=0.005km=5m\)
Do đó: \(a:b=\dfrac{2}{3}:5=\dfrac{2}{15}\)
A=(2*2*2*2*2)*(2*2*2*2*2)*...*(2*2*2*2*2); 10 nhóm như thế. A=32*32*...*32; 10 lần B=(5*5)*(5*5)*...*(5*5); 10 nhóm như thế. B=25*25*...*25; 10 lần Vì 32>25 nên A>B
A=(2*2*2*2*2)*(2*2*2*2*2)*...*(2*2*2*2*2); 10 nhóm như thế.
A=32*32*...*32; 10 lần
B=(5*5)*(5*5)*...*(5*5); 10 nhóm như thế.
B=25*25*...*25; 10 lần
Vì 32>25 nên A>B
\(A>\dfrac{2^{2018}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{3^{2019}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{5^{2020}}{5^{2020}+2^{2018}+3^{2019}}=1\)
\(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)
=>B<1
=>A>B
So sánh:
a) 5^300 và 3^500
b) (-16)^11 và (-32)^9
c) (2^2)^3 và 2^2^3
d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20
e) 4^30 và 3×24^10
g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51
a) ta có: \(2^{100}=\left(2^2\right)^{50}=4^{50}\) và 550
Vì 4 < 5 => 450 < 550
Vậy 2100 < 550
b) Ta có: \(4^{30}=\left(4^3\right)^{10}=64^{10}\)
\(8^{20}=\left(8^2\right)^{10}=64^{10}\)
Vì 64 = 64 => 6410 = 6410
Vậy 430 = 820
Bài 1 : Viết các tổng sau thành bình phương của 1 số tự nhiên
A. 5 3 + 62 + 8
B . 2 + 32+ 42 + 132
Bài 2 : So sánh các số sau
A . 320 và 274
Ta có : 274 = (32)4 = 38
Vì 20 < 8 => 320 > 274
( Những câu còn lại tương tự ) - Tự làm nhé ! Mình bận ~
# Dương
Ta có:
A = 250 = (25)10 = 3210
B = 520 = (52)10 = 2510
Do 3210 > 2510 nên A > B