chứng minh biểu thức sau có giá trị không phụ thuộc vào biến \(x\)
a)\(A=\)\(\sqrt[3]{x\sqrt{x}+3x+3\sqrt{x}+1}-\left(\sqrt{x}+2\right)\)
b)\(Q=\left(\sqrt[3]{x}+1\right)^3-\left(\sqrt[3]{x}-1\right)-6\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x}+1\right)\)
a: \(A=\sqrt[3]{\left(\sqrt{x}+1\right)^3}-\left(\sqrt{x}+2\right)\)
\(=\sqrt{x}+1-\sqrt{x}-2\)
=-1
b: \(Q=\left(\sqrt[3]{x}+1\right)^3-\left(\sqrt[3]{x}-1\right)^3-6\left(\sqrt[3]{x}-1\right)\left(\sqrt[3]{x}+1\right)\)
\(=x+3\sqrt[3]{x^2}+3\sqrt[3]{x}+1-x+3\sqrt[3]{x^2}-3\sqrt[3]{x}+1-6\left(\sqrt[3]{x^2}-1\right)\)
\(=6\sqrt[3]{x^2}+2-6\sqrt[3]{x^2}+6=8\)