K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2019

Bạn tham khảo tại đây nhé:

Chứng minh 2222^5555+5555^2222 chia hết cho 7 - Nguyễn ...

Chúc bạn học tốt!

13 tháng 12 2019

ơ thế mình gợi ý bằng không à .-. mình tìm trên mạng rồi mà không có cách đó nên mới nhờ các bạn chứ :vv

12 tháng 11 2015

\(5555^{666}:5555^{444}=5555^{666-444}=5555^{222}\)

12 tháng 11 2015

\(5555^{666}:5555^{444}=5555^{666-444}=5555^{222}\)

1 tháng 3 2017

16665 nha

1 tháng 3 2017

16665

13 tháng 9 2018

88 + 888 + 8 + 8 + 8 = 1000

13 tháng 9 2018

555 + 55 + 55 + 55 + 55 + 55 + 55 + 55 + 55 + 5 = 1000

20 tháng 3 2016

24^1917 + 14^1917 
=(24+14) (lương liên hợp) 
=38(lương liên hợp) 
Chia hết cho 19 

a có: 
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4). 
2^5 = 32 đồng 7 (mod 25) 
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25). 
mặt khác: 
A= 2^9 +2^99 =2^9(1+2^90) 
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25) 
=> 2^9 +2^99 đồng dư 0 (mod 25) 
BSCNN của 4 và 25 =100 
=> A đồng dư 0 (mod 100) 
hay A chia hết cho 100. 

22226 đồng dư 1 (mod7)         
và 5555=6x925+5
=> 22225555 đồng dư 2222 5 (mod7)
mà 22225 = 2222 2x 22222 x 2222 
22222 đồng dư 2 (mod 7) => 2222 5  đồng dư 2x2x2222 (mod 7)
=> 22225555 đồng dư với 5 (mod 7)
Tương tự có 55552222 đông dư 2 (mod 7)
Vậy => 22225555+55552222 đồng dư 5+2=7 (mod 7)
=> 22225555+55552222 đồng dư 0 (mod7)
=>đpcm

25 tháng 12 2016

de qua di

23 tháng 11 2016

ko thuc hien duoc

\(2222^{5555}=2^{5555}.1111^{5555}=\left(2^5\right)^{1111}.1111^{5555}=32^{1111}.1111^{5555}\)

\(5555^{2222}=5^{2222}.1111^{2222}=\left(5^2\right)^{1111}.1111^{2222}=25^{1111}.1111^{2222}\)

\(32^{1111}.1111^{5555}>25^{1111}.1111^{2222}\Rightarrow2222^{5555}>5555^{2222}\)

vậy \(2222^{5555}>5555^{2222}\)

31 tháng 5 2015

Trang Đỗ sai  ruj