Chứng minh với mọi a,b,c,d>0 ta có :\(\frac{1}{a^2+b^2+c^2}+\frac{2012}{ab+bc+ca}\ge671\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ac}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
TT
=> \(VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+a\right)\left(c+b\right)}\)
Áp dụng cosi \(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3}{4}a\)
Tương tự với các phân thức còn lại
=> \(VT+\frac{1}{2}\left(a+b+c\right)\ge\frac{3}{4}\left(a+b+c\right)\)
=> \(VT\ge\frac{a+b+c}{4}\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=3
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
a/ Biến đổi tương đương:
\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)
\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)
b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)
Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)
Cộng vế với vế ta có đpcm
\(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca\right)^2}{2a^2+bc}\le\left(a+b+c\right)^2\)
Ta có: \(\frac{\left(ab+bc+ca\right)^2}{2a^2+bc}\le\frac{\left(ab+ca\right)^2}{2a^2}+\frac{\left(bc\right)^2}{bc}=\frac{\left(b+c\right)^2}{2}+bc\)
Tương tự rồi cộng lại ta thu được:
\(L.H.S\le\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{2}+ab+bc+ca\)
\(=\frac{2\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)}{2}+ab+bc+ca\)\(=\left(a+b+c\right)^2\)
P/s: Nhìn đơn giản chứ nó là bao nhiêu ngày suy nghĩ đấy ạ:( Chả biết đúng hay sai nữa:v