bài 1:
Cho S = 2008 + 20082 + ... + 2008200 . CMR S chia hết cho 2009
Bài 2:
Biểu diễn số 100...012 (n chữ số 0) trong hệ thập phân. (n chữ số 0)
Giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)
\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))
* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))
Vậy không tồn tại số nguyên dương n thỏa mãn đề bài
1.
Gọi P=abcdeg
abc chia hết cho7
deg chia hết cho 7
Suy ra abc-deg chia hết cho 7
Và abcdeg chia hết cho 7( vì abc và deg đều chia hết cho 7 và nhân lên thì cũng chia hết cho 7)
2.
5+5²+5³+5⁴+........+5⁹⁹+5¹⁰⁰
=(5+5²)+(5³+5⁴)+......+(5⁹⁹+5¹⁰⁰)
=(5+5²)+5²×(5+5²)+.....+5⁹⁸×(5+5²)
=1×30+5²×30+........+5⁹⁸×30
=30×(1+5²+......+5⁹⁸) chia hết cho 6 vì 30 chia hết cho 6.
Nhấn cho mk r mk giải tiếp cho
Ai đúng mình ck cho
Bài 1 :
\(S=2008+2008^2+...+2008^{200}\)
\(S=\left(2008+2008^2\right)+\left(2008^3+2008^4\right)+...+\left(2008^{199}+2008^{200}\right)\)
\(S=2008\left(1+2008\right)+2008^3\left(1+2008\right)+...+2008^{199}\left(1+2008\right)\)
\(S=2008.2009+2008^3.2009+...+2008^{199}.2009\)
\(S=2009\left(2008+2008^3+...+2008^{199}\right)⋮2009\) ( đpcm )
Chúc bạn học tốt ~