K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2018

Ai đúng mình ck cho

28 tháng 9 2018

Bài 1 : 

\(S=2008+2008^2+...+2008^{200}\)

\(S=\left(2008+2008^2\right)+\left(2008^3+2008^4\right)+...+\left(2008^{199}+2008^{200}\right)\)

\(S=2008\left(1+2008\right)+2008^3\left(1+2008\right)+...+2008^{199}\left(1+2008\right)\)

\(S=2008.2009+2008^3.2009+...+2008^{199}.2009\)

\(S=2009\left(2008+2008^3+...+2008^{199}\right)⋮2009\) ( đpcm ) 

Chúc bạn học tốt ~ 

26 tháng 1 2021

\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)

\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))

* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))

Vậy không tồn tại số nguyên dương n thỏa mãn đề bài

5 tháng 11 2019

1.

Gọi P=abcdeg

abc chia hết cho7

deg chia hết cho 7

Suy ra abc-deg chia hết cho 7

Và abcdeg chia hết cho 7( vì abc và deg đều chia hết cho 7 và nhân lên thì cũng chia hết cho 7)

2.

5+5²+5³+5⁴+........+5⁹⁹+5¹⁰⁰

=(5+5²)+(5³+5⁴)+......+(5⁹⁹+5¹⁰⁰)

=(5+5²)+5²×(5+5²)+.....+5⁹⁸×(5+5²)

=1×30+5²×30+........+5⁹⁸×30

=30×(1+5²+......+5⁹⁸) chia hết cho 6 vì 30 chia hết cho 6.

Nhấn cho mk r mk giải tiếp cho

14 tháng 9 2019

Mình ko biết