K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

 Thì............CỨ THẾ MÀ LÀM THÔI !.......

NV
14 tháng 3 2022

Từ M kẻ \(MH\perp AC\Rightarrow MH=AM.sinA\)

\(S_{AMN}=\dfrac{1}{2}MH.AB=\dfrac{1}{2}AM.AN.sinA\)

Mà góc A cố định \(\Rightarrow S_{min}\) khi \(AM.AN\) đạt min

Qua B, C lần lượt kẻ các đường thẳng song song d, cắt AD tại E và F

\(\Delta BDE=\Delta CDF\left(g.c.g\right)\Rightarrow DE=DF\)

Talet: \(\dfrac{AB}{AM}=\dfrac{AE}{AI}\) ; \(\dfrac{AC}{AN}=\dfrac{AF}{AI}\)

\(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AE+AF}{AI}=\dfrac{\left(AD-DE\right)+\left(AD+DF\right)}{AI}=\dfrac{2AD}{AI}\)

Do A; I; D cố định \(\Rightarrow\dfrac{2AD}{AI}\) cố định

\(\dfrac{2AD}{AI}=\dfrac{AB}{AM}+\dfrac{AC}{AN}\ge2\sqrt{\dfrac{AB.AC}{AM.AN}}\Rightarrow AM.AN\ge\dfrac{AB.AC.AI^2}{AD^2}\)

Đẳng thức xảy ra khi và chỉ khi \(\dfrac{AB}{AM}=\dfrac{AC}{AN}\Rightarrow d||BC\) theo Talet đảo

NV
14 tháng 3 2022

undefined

AH
Akai Haruma
Giáo viên
28 tháng 2 2021

Hình vẽ:undefined

AH
Akai Haruma
Giáo viên
28 tháng 2 2021

Lời giải:

Lấy $K, H$ lần lượt đối xứng với $M$ qua $AB,AC$.

Theo tính chất đối xứng: $EK=EM; FM=FH$ 

Chu vi tam giác $MEF$:

$ME+EF+MF=EK+FH+EF\geq KH(*)$

Vì $M$ cố định và tam giác $ABC$ cố định nên $KH$ cố định 

Vậy chu vi $MEF$ nhỏ nhất bằng $KH$. Điều này xảy ra khi $E,F$ là giao điểm của $KH$ với lần lượt $AB,AC$