Tìm STN n sao cho :
a, ( n + 3 ) \(⋮\) ( n - 2 )
b, ( 2n + 9 ) \(⋮\) ( n - 3 )
c, ( 3n - 1 ) \(⋮\) ( 3 - 2n )
giải rõ ràng hộ mk mk cần gấp ai xong đầu tiên mk tick. ok help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2n+8}{3n+1}=\frac{3.\left(2n+8\right)}{2.\left(3n+1\right)}=\frac{6n+24}{6n+2}=\frac{6n+2+22}{6n+2}=1+\frac{22}{6n+2}\)
\(n\inℕ\Rightarrow22⋮\left(6n+2\right)\Leftrightarrow6n+2\inƯ\left(22\right)=\left\{1;2;11;22\right\}\)
Nêu 6n+2=1 thì n = -1/6 (loại)
Nếu 6n+2 = 2 thì n = 0
Nếu 6n+2=11 thì n = 3/2 (loại)
Nếu 6n+2=22 thì n = 10/3
Vậy n = 0
3n + 19 : n - 1
3n - 1 + 20 : n - 1
mà 3n - 1 : n - 1 => 20 : n - 1 => n - 1 thuộc Ư(20) = { 1; 2; 5; 10; 20; -1; -2; -5; -10; -20 }
sau đó tìm n ( như kiểu tìm x ) với các giá trị trên là xong
học tốt ^^
3n+19:n-1
=> n+n+n+19:n-1
=> (n-1)+(n-1)+(n-1)+22:n-1
=> 22:n-1
=> \(n-1\inƯ\left(22\right)\)
mà n > 2
\(\Rightarrow n\in\left\{2;11;22;-2;-11;-22\right\}\)
(6n+5)\(⋮\)(n+2)
6n+12-7\(⋮\)n+2
6(n+2)-7\(⋮\)n+2
Vì (n+2)\(⋮\)(n+2)=>6(n+2)\(⋮\)(n+2)
Buộc 7\(⋮\)n+2=>n+2ϵƯ(7)={1;7}
Với n+2=1=>n= -1
Với n+2=7=>n=5
Vậy n=5
(3n+2)\(⋮\)(2n+3)
6n+9-7\(⋮\)(2n+3)
3(2n+3)-7\(⋮\)(2n+3)
Vì 3(2n+3)\(⋮\)(2n+3)
Buộc 7\(⋮\)2n+3=>2n+3ϵƯ(7)={1;7}
Với 2n+3=1=>2n= -2=>n= -1
Với 2n+3=7=>2n=4=>n=2
Vậy n=2
a)Gọi ƯCLN (\(n+3;2n+5\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+3\right)⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow\left(2n+6\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (\(n+3;2n+5\))=1
\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản(đpcm)
b)Gọi ƯCLN (\(2n+9;3n+14\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+9\right)⋮d\Rightarrow3\left(2n+9\right)⋮d\Rightarrow\left(6n+27\right)⋮d\\\left(3n+14\right)⋮d\Rightarrow2\left(3n+14\right)⋮d\Rightarrow\left(6n+28\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+28\right)-\left(6n+27\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (\(2n+9;3n+14\))=1
\(\Rightarrow\frac{2n+9}{3n+14}\) là phân số tối giản.(đpcm)
c)Gọi ƯCLN(\(6n+11;2n+5\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(6n+11\right)⋮d\\\left(2n+5\right)⋮d\Rightarrow3\left(2n+5\right)⋮d\Rightarrow\left(6n+15\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+15\right)-\left(6n+11\right)⋮d\)
\(\Rightarrow4⋮d\)
Mà \(\left(6n+15\right);\left(6n+11\right)⋮̸2\)
\(\Rightarrow d=1\)
⇒ƯCLN(\(6n+11;2n+5\))=1
\(\Rightarrow\frac{6n+11}{2n+5}\)là phân số tối giản (đpcm)
d)Gọi ƯCLN(\(12n+1;30n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(12n+1\right)⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow\left(60n+5\right)⋮d\\\left(30n+2\right)⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow\left(60n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(12n+1;30n+2\))=1
\(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)
e)Gọi ƯCLN(\(21n+4;14n+3\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(21n+4\right)⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow\left(42n+8\right)⋮d\\\left(14n+3\right)⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow\left(42n+9\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(21n+4;14n+3\))=1
\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản (đpcm)
f) Gọi ƯCLN(\(2n+3;n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(n+2\right)⋮d\Rightarrow2\left(n+2\right)⋮d\Rightarrow\left(2n+4\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(2n+3;n+2\))=1
\(\Rightarrow\frac{2n+3}{n+2}\)là phân số tối giản (đpcm)
g) Gọi ƯCLN(\(n+1;3n+2\))=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+1\right)⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow\left(3n+3\right)⋮d\\\left(3n+2\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN(\(n+1;3n+2\))=1
\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản (đpcm)
a,
\(\left(n+3\right)⋮\left(n-2\right)\\ \Rightarrow\left(n-2\right)+5⋮\left(n-2\right)\\ \Rightarrow5⋮\left(n-2\right)\\ \Rightarrow\left(n-2\right)\in\left\{{}\begin{matrix}5\\-5\\1\\-1\end{matrix}\right.\\ \Rightarrow n\in\left\{{}\begin{matrix}7\\-3\\4\\2\end{matrix}\right.\)
vì là số tự nhiên nên
\(n\in\left\{{}\begin{matrix}7\\4\\2\end{matrix}\right.\)
b,
\(\text{ ( 2n + 9 ) ⋮ ( n - 3 )}\\ \Rightarrow2\left(n-3\right)+15⋮\left(n-3\right)\\ \Rightarrow15⋮\left(n-3\right)\\ \Rightarrow\left(n-3\right)\inƯ\left(15\right)=\left\{15;5;3;1;-1;-3;-5;-15\right\}\\ \Rightarrow n\in\left\{18;8;6;4;2;0;-2;-13\right\}\)
vì n là số tự nhiên nên:
\(n\in\left\{18;8;6;4;2;0\right\}\)